			I	GENERAL STR	JCTURA	AL NOTES
	1.	SLAB ELEVATIONS SHALL BE COORDINATED WITH ARCHITECTURAL DRAWIN	NGS.		4.	EXCAVATION FOR NEW FOUNDATION ELEMENTS
	2.	BUILDING DIMENSIONS SHALL BE AS PER ARCHITECTURAL DRAWINGS UNLI	ESS SHOWN OTHERWISE			24 INCHES BELOW THE BOTTOM OF THE FOUNDA WITH ALL REDDISH BROWN SILTY SOIL BEING RE
	3.	TYPICAL DETAILS SHOWN ON SDC SHEETS SHALL APPLY TO ALL DRAWINGS	S UNLESS NOTED OTHERWISE.			TOP SURFACE OF THE LIMESTONE SHALL BE SCA RECOMPACTED TO AT LEAST 95 PERCENT OF TH
	4.	UNLESS NOTED OTHERWISE, REFER TO DRAWINGS OTHER THAN STRUCTU OPENING CURBS, STAIRS, RAMPS, TRENCHES, EQUIPMENT AND LOCATIONS		-		APPROPRIATE MATERIAL AS DESCRIBED BELOW THOROUGHLY COMPACTED TO A MINIMUM OF 95
	5.	CONTRACTOR TO COORDINATE ALL NEW WORK WITH EXISTING SITE COND ENGINEER PRIOR TO CONSTRUCTION.	REPANCIES TO THE	5.	FOOTING EXCAVATION AND RECOMPACTION, WH VERIFY CONDITION OF SOIL BEARING CAPACITY I UNSATISFACTORY SOILS ARE ENCOUNTERED, TH CEMENT GROUT OR AS RECOMMENDED BY THE (
	6.	DETAILS OR CONDITIONS NOT FULLY DEVELOPED ON STRUCTURAL DOCUM	IENTS ARE SIMILAR TO DEVELO	PED DETAILS.	6.	FILL AND BACKFILL MATERIAL SHALL BE FREE OF
	7.	SEE ARCHITECTURAL AND MECHANICAL DRAWINGS FOR WATERPROOFING REQUIREMENTS.	B, DAMP-PROOFING, AND DRAINA	AGE	0.	NON-EXPANSIVE WITH A PLASTICITY INDEX LESS 25 PERCENT, AND WITH NO MORE THAN 25 PERC AND ORGANICS SHALL NOT BE USED. ON SITE EX
	8.	REFER TO GEOTECHNICAL REPORT FOR SITE CONDITIONS EXCAVATION, SI BEHIND WALLS AND SUBDRAINAGE PREPARATIONS.	HORING REQUIREMENTS, UNDE	RPINNING, BACKFILL	7.	REQUIREMENTS MAY BE USED AS BACKFILL MAT
	9.	ALL BUILDING FOUNDATION PLANS AND ROOF PLANS TO BE COORDINATED APPLICABLE.) WITH GENERAL NOTES AND TY	PICAL DETAILS AS		DESCRIBED ABOVE, AND SHALL BE UNDERLAIN B COMPACTED TO AT LEAST 95 PERCENT OF ITS M
_	10.	STRUCTURES HAVE BEEN DESIGNED TO BE STABLE AND SELF SUPPORTING THE CONTRACTOR'S SOLE RESPONSIBILITY FOR THE BUILDING'S STABILITY		,	STEE	<u>:L</u>
		ALSO INCLUDES BUT IS NOT LIMITED TO METHOD AND SEQUENCE OF EREC BRACING.	CTION, TEMPORARY SHORING A	ND TEMPORARY	1.	— DETAIL, FABRICATE, AND ERECT STRUCTURAL ST
	11.	IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO FOLLOW ALL APPLICAB PHASES OF CONSTRUCTION.	BLE SAFETY CODES AND REGUL	ATIONS DURING ALL	2.	SPECIFICATION FOR STRUCTURAL STEEL BUILDIN J ANCHOR BOLTS: ASTM F1554 GRADE 36.
	12.	THE REFERENCE DATUM FOR ALL ELEVATIONS IN THIS STRUCTURAL PLAN	SET IS BASED FROM THE DATU	M USED IN THE CIVIL	3.	ALL STEEL BARS & PLATES SHALL BE ASTM A36 U
		PLAN SET.			4.	ALL WIDE FLANGE SHAPES SHALL BE ASTM A992
	SPEC	IAL INSPECTION			5.	ALL HSS SECTIONS SHALL BE ASTM A500; GRADE
	1.	SPECIAL INSPECTION IN ACCORDANCE WITH 2009 IBC CHAPTER 17 IS REQU	JIRED ON THE FOLLOWING POR	TIONS OF THE	6.	ALL PIPES TO BE ASTM A53; GRADE B.
		WORK: CONCRETE REINFORCING STEEL			7.	ALL THREADED RODS: ASTM A36 OR ASTM A572;
		SOILS STRUCTURAL STEEL REFER TO THE STATEMENT OF SPECIAL INSPECTIONS FOR MORE SPECIFIC			8.	BOLTED CONNECTIONS, UNLESS NOTED OTHERV
					9.	INSTALL HIGH STRENGTH BOLTS IN ACCORDANCE
	<u>CON(</u>	CAST IN PLACE CONCRETE:			10.	ASTM HIGH STRENGTH BOLTS, 2009 EDITION.
	1.	FOUNDATION	f'c = 4,000 psi			EXCEEDS 1:20.
		CONCRETE TOPPING OVER METAL DECK	f'c = 4,000 psi		11.	ANCHOR RODS SHALL BE THREADED ANCHOR ROR ROD TO PREVENT ROTATION DURING TIGHTENIN
_		OTHERS ** UNLESS NOTED OTHERWISE ON PLANS **	rc = 3,000 psi		12.	BOLT HOLES IN STEEL SHALL BE "STANDARD" (1/ NOTED).
	2.	CONCRETE REINFORCING CLEAR COVER SHALL BE AS FOLLOWS:			13.	WELDING ELECTRODES (FILLER METAL) E70XX (7
		CONCRETE CAST CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH		3 INCHES	14.	WELD LENGTHS CALLED FOR ON THE PLANS ARE
		CONCRETE EXPOSED TO EARTH OR WEATHER: NO. 6 OR LARGER BARS NO. 6 OR SMALLER BARS		2 INCHES 1.5 INCHES	15.	SHOWN IT SHALL BE FULL LENGTH OF THE JOINT COMPLETE PENETRATION WELDS SHALL BE MAD
		CONCRETE NOT EXPOSED TO EARTH OR IN CONTACT WITH GROUND: SLAB OR WALLS		0.75 INCHES		BACKING BARS AND GRIND SMOOTH. FULL PENE GOUGED BEFORE WELDING IS STARTED FROM T
	•	BEAMS OR COLUMN PRIMARY REINFORCEMENT, TIES, STIRRUPS, SP			16.	ALL BUTT AND GROOVE WELDS SHALL BE FULL P
	3.	ALL CONCRETE DIMENSIONS SHOWN ARE MINIMUM DIMENSIONS. CONTRAC REINFORCING DETAILS AND ANY EMBEDDED ITEMS AND DETERMINE PRIOR PLACEMENT REQUIREMENTS AND CLEARANCES.			17.	ALL SPLICING OF MEMBERS SHALL BE AS SHOWN STEEL FABRICATOR SHALL BE SHOWN ON SHOP
	4.	CONCRETE MASONRY UNIT (CMU):			18.	ALL ANCHOR BOLTS SHALL BE EMBEDDED AS SH
		COMPOSITE CMU (MIN.)	rm = 1,500 psi		19.	MINIMUM PLATE THICKNESS IN 3/8 UNLESS OTHE
		RETE AND MASONRY REINFORCEMENT			20.	ALL STEEL FABRICATION AND DETAILS TO COMPL AND THE 2009 IBC.
	1.	ALL CONCRETE REINFORCING SHALL CONFORM TO THE REQUIREMENTS O CONFORMS TO ALL REQUIREMENTS OF ACI 318-08 SECTION 21.1.5.	F ASTM A706. ASTM A615 STEEL	. MAY BE USED IF IT	21.	ALL WELDING TO BE BY AWS CERTIFIED WELDER SHALL BE PRE-QUALIFIED BY THE PROJECT WELD
	2.	REINFORCING SHALL EXTEND CONTINUOUS FOR THE DIMENSION SHOWN.			22	THEY WILL BE PERFORMING. UNLESS NOTED OTHERWISE, ALL STEEL EXPOSE
	3.	NO WELDING OF ANY REINFORCING IS PERMITTED, UNLESS SPECIFICALLY WELDED TO MEET THE REQUIREMENTS OF ASTM A706.		IRCEMENT TO BE	22.	UNLESS NOTED OTHERWISE, ALL STEEL EXPOSE
	4.	LOCATE ALL REINFORCING AS SHOWN ON DRAWINGS AND FASTEN SECURE				
	5.	ALL REINFORCING TO TERMINATE WITH STANDARD HOOKS AS SHOWN ON 135 DEGREE BENDS.	PLANS. ALL STIRRUPS AND TIES	TO BE CLOSED WITH		
Ć	POSI					
2		SEE SPECIFICATIONS SECTION 03 15 00.				STRUCT
	<u>FOUR</u>					DEFEDENCES
	1.	UNLESS DIFFERENT VALUES ARE PROVIDED IN THE PROJECT GEOTECHNIC BE ASSUMED:	AL REFORT, THE FOLLOWING S	OIL PROPERTIES SHALL	1.	REFERENCES IBC 2009
		DL + LL				ASCE 7-05 ACI 318-08
		COEFFICIENT OF FRICTION			2.	LOADS
		(SEE EARTHWORK SPECIFICATIONS FOR EARTHWORK, FILL MATERIALS, COMPACTION REQUIREMENTS AND BASECOURSE	E.)		۷.	A. DEAD LOAD
	2.	THE CONTRACTOR SHALL RETAIN A SOIL ENGINEER TO PREPARE A GEOTE PRIOR TO COMMENCING ANY WORK.	CHNICAL REPORT TO VERIFY A	SSUMED VALUES HEREIN		SELF WEIGHT OF THE STRUC CONCRETE STEEL
	3.	ALL GRADING SHALL BE DONE IN ACCORDANCE WITH THE CONTOURS AND SLIGHTLY SLOPED TO PROVIDE PROPER SURFACE DRAINAGE AND TO AVO		RADE SHALL BE		

GENERAL STRU	JCTURAL NOTES		STI	RUCTURAL	DESIGN C	RITERIA			
E RWISE. PES, DEPRESSIONS, CONDITIONS.	4. EXCAVATION FOR NEW FOUNDATION ELEMENTS AND CONCRETE SLABS ON GROUND SHALL EXTEND DOWN TO A MINIMUM OF 24 INCHES BELOW THE BOTTOM OF THE FOUNDATION ELEMENTS SUCH THAT THE UNDERLYING WHITISH LIMESTONE IS EXPOSED, WITH ALL REDDISH BROWN SILTY SOIL BEING REMOVED. FOUNDATION ELEMENTS SHALL NOT BEAR ON BOULDERS. THE EXPOSED TOP SURFACE OF THE LIMESTONE SHALL BE SCARIFIED TO APPROXIMATELY 12 INCHES DEEP, MOISTURE CONDITIONED AND RECOMPACTED TO AT LEAST 95 PERCENT OF THE MAXIMUM DRY DENSITY. THE EXCAVATION CAN THEN BE BACKFILLED WITH APPROPRIATE MATERIAL AS DESCRIBED BELOW IN LAYERS NOT TO EXCEED 12 INCHES AND MOISTURE CONDITIONED AND THOROUGHLY COMPACTED TO A MINIMUM OF 95 PERCENT OF THE MAXIMUM DRY DENSITY.	B. LI C. W	VE LOAD DESIGN LOADS: PARTITION/HVA(ROOF LIVE LOAI FLOOR/DECK/BA	D					
Y DISCREPANCIES TO THE	5. FOOTING EXCAVATION AND RECOMPACTION, WHERE REQUIRED, SHALL BE INSPECTED BY THE GEOTECHNICAL ENGINEER TO VERIFY CONDITION OF SOIL BEARING CAPACITY PRIOR TO PLACEMENT OF FOUNDATION FORMS AND REBAR. WHERE UNSATISFACTORY SOILS ARE ENCOUNTERED, THEY SHALL BE OVEREXCAVATED AND REPLACED WITH A LEAN CONCRETE OR CEMENT GROUT OR AS RECOMMENDED BY THE GEOTECHNICAL ENGINEER.	ASCE 7-05 DESIGN WIND SPEED = 170 mph EXPOSURE = C							
EVELOPED DETAILS. DRAINAGE	6. FILL AND BACKFILL MATERIAL SHALL BE FREE OF ROCK FRAGMENTS OR LUMPS WITH MAXIMUM DIMENSION LESS THAN 3 INCHES, NON-EXPANSIVE WITH A PLASTICITY INDEX LESS THAN OR EQUAL TO 6 PERCENT AND A LIQUID LIMIT OF NOT MORE THAN 25 PERCENT, AND WITH NO MORE THAN 25 PERCENT PASSING A NO. 200 MESH SIEVE. UNSUITABLE MATERIALS SUCH AS DEBRIS	D. SI	IMPORTANCE FA EISMIC SEISMIC DESIGN	ACTOR = 1.15		AS	CE 7-05		
, UNDERPINNING, BACKFILL	AND ORGANICS SHALL NOT BE USED. ON SITE EXCAVATED SILTY SANDY LIMESTONE GRAVEL SOIL MEETING THE ABOVE REQUIREMENTS MAY BE USED AS BACKFILL MATERIAL.		Ss = 1.5 S1 = 0.6		TRA	ANSITION PEF E CLASS C			
AND TYPICAL DETAILS AS	7. CONCRETE SLABS ON GROUND SHALL BEAR ON EITHER NATURAL LIMESTONE OR BACKFILL MATERIAL PLACED AND PREPARED AS DESCRIBED ABOVE, AND SHALL BE UNDERLAIN BY A MINIMUM OF 6 INCHES OF AGGREGATE BASE COURSE, PLACED AND COMPACTED TO AT LEAST 95 PERCENT OF ITS MAXIMUM DRY DENSITY, WITH A UNIFORM AND NON-YIELDING SURFACE. SEISMIC FORCE RESISTING SYSTEMS:								
CTION IS COMPLETE, IT IS N. THIS RESPONSIBILITY	STEEL		MAIN BUILDING R = 8	- R/C SMRF OMEGA = 3	Cd :	= 5.5			
RING AND TEMPORARY REGULATIONS DURING ALL	 DETAIL, FABRICATE, AND ERECT STRUCTURAL STEEL IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS (LATEST EDITION AND SUPPLEMENTS). J ANCHOR BOLTS: ASTM F1554 GRADE 36. 		ELEVATOR/STAI R = 5		CIAL R/C/ BE	ARING WALLS	6		
E DATUM USED IN THE CIVIL	3. ALL STEEL BARS & PLATES SHALL BE ASTM A36 UNLESS OTHERWISE NOTED.								
	4. ALL WIDE FLANGE SHAPES SHALL BE ASTM A992 (GRADE 50).	IBC 2009 / ASCE 7-05 LOAD COMBINATIONS							
	5. ALL HSS SECTIONS SHALL BE ASTM A500; GRADE B.								
G PORTIONS OF THE	6. ALL PIPES TO BE ASTM A53; GRADE B.	pg 308	STANCE FACTOR DESIGN)			<u> </u>			
	7. ALL THREADED RODS: ASTM A36 OR ASTM A572; GRADE 50.	IBC 2009	D	н	F	L	Lr/R		
	8. BOLTED CONNECTIONS, UNLESS NOTED OTHERWISE: 3/4-INCH DIAMETER A325-X BOLTS.	16-1 16-2b	1.4	1.6	1.4	1.6	0.5		
	9. INSTALL HIGH STRENGTH BOLTS IN ACCORDANCE WITH SECTION 8 OF THE SPECIFICATIONS FOR STRUCTURAL JOINTS USING ASTM HIGH STRENGTH BOLTS, 2009 EDITION.	16-3a	1.2			0.5	1.6		
	10. PROVIDE BEVELED WASHERS ON ALL CONNECTION TO SLOPING FLANGES OF W SECTIONS AND CHANNELS WHERE SLOPE	16-3b	1.2				1.6		
		16-4	1.2			0.5	0.5		
	11. ANCHOR RODS SHALL BE THREADED ANCHOR RODS WITH NUT. THE EMBEDDED NUT SHALL BE TACK WELDED TO THE ANCHOR ROD TO PREVENT ROTATION DURING TIGHTENING.	16-5	1.2			0.5			
	12. BOLT HOLES IN STEEL SHALL BE "STANDARD" (1/16-INCH LARGER IN DIAMETER THAN THE NOMINAL BOLT SIZE, UNLESS OTHERWISE NOTED).		(1.2 + 0.2S _{DS}) (1.2 + 0.2S _{DS})			0.5			
	 WELDING ELECTRODES (FILLER METAL) E70XX (70KSI), WITH EXACT FILLER METAL SELECTED BY THE FABRICATOR. 	16-6	0.9	1.6		0.0			
3 INCHES	 14. WELD LENGTHS CALLED FOR ON THE PLANS ARE THE NET EFFECTIVE LENGTH REQUIRED, WHERE LENGTH OF WELD IS NOT SHOWN IT SHALL BE FULL LENGTH OF THE JOINT. 	16-7	0.9	1.6					
	15. COMPLETE PENETRATION WELDS SHALL BE MADE WITH PROPER BACKING WHEREVER POSSIBLE. AFTER WELDING, REMOVE BACKING BARS AND GRIND SMOOTH. FULL PENETRATION WELDS MADE WITHOUT PROPER BACKING SHALL HAVE THE ROOT		(0.9 - 0.2S ds) (0.9 - 0.2S ds)	1.6 1.6					
0.75 INCHES 1.5 INCHES	GOUGED BEFORE WELDING IS STARTED FROM THE OTHER SIDE EXCEPT AS PROVIDED IN AWS D1.1.	HOR CANT SEISMIC							
NG, REINFORCING,	16. ALL BUTT AND GROOVE WELDS SHALL BE FULL PENETRATION, UNLESS NOTED OTHERWISE.	ASD (ALLOWABLE STRESS DESIGN)							
IY REINFORCING,	17. ALL SPLICING OF MEMBERS SHALL BE AS SHOWN ON THE DRAWINGS. ANY SPLICING OF STEEL MEMBERS PROPOSED BY THE STEEL FABRICATOR SHALL BE SHOWN ON SHOP DRAWINGS AND APPROVED BY THE ENGINEER PRIOR TO FABRICATION.	pg 308 IBC 2009	D	н	F	L	Lr/R		
	18. ALL ANCHOR BOLTS SHALL BE EMBEDDED AS SHOWN ON THE DRAWINGS.	16-8	1		1				
	19. MINIMUM PLATE THICKNESS IN 3/8 UNLESS OTHERWISE NOTED. MINIMUM WELD ID 1/4 INCH UNLESS OTHERWISE NOTED.	16-9 16-10	1	1	1	1	1		
	20. ALL STEEL FABRICATION AND DETAILS TO COMPLY WITH MOST STRINGENT OF THE LATEST EDITION OF AISC CODE, AWS CODE, AND THE 2009 IBC.	16-11	1	1	1	0.75	0.75		
STEEL MAY BE USED IF IT	21. ALL WELDING TO BE BY AWS CERTIFIED WELDERS AND SHALL CONFORM TO ALL 2009 IBC AND AWS REQUIREMENTS. ALL WELDERS SHALL BE PRE-QUALIFIED BY THE PROJECT WELDING INSPECTOR FOR THE WELD TYPES AND POSITION USED IN THE PROCEDURES THEY WILL BE PERFORMING.	16-12a 16-12b	1	1	1				
REINFORCEMENT TO BE	22. UNLESS NOTED OTHERWISE, ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED.		(1 + 0.14 <i>S</i> _{DS})	1	1				
		ASIF = 1.2	(1 + 0.14 <i>S</i> _{DS})	1	1				
		16-13a	1	1	1	0.75	0.75		
ND TIES TO BE CLOSED WITH		16-13b	1 (1 + 0.10S _{DS})	1	1	0.75	0.75		
		ASIF = 1.2	(1 + 0.10S _{DS})	1	1	0.75	0.75		
	STRUCTURAL DESIGN CRITERIA	16-14	0.6	1					
		16-15	0.6	1					
WING SOIL PROPERTIES SHALL	1. REFERENCES IBC 2009 AISC 360-05		(1 + 0.14 <i>S</i> _{DS})	1					
	ASCE 7-05 ACI 530-08 ACI 318-08 PCI DESIGN HANDBOOK 6TH EDITION	ASIF = 1.2 HOR CANT SEISMIC	(1 + 0.14 <i>S</i> _{DS})	1					
	2. LOADS	D - DEAD LOAD	W - WIND L			F - WELL DE			
RIFY ASSUMED VALUES HEREIN	A. DEAD LOAD SELF WEIGHT OF THE STRUCTURE	L - LIVE LOAD L - LIVE LOAD Lr - ROOF LIVE LOAD	E - SEISMIC		URE	F - WELL DE T - SELF STF			
	CONCRETE								
). SUBGRADE SHALL BE			L				IF SHEE REDUCE		

			DEALA						REVISIONS	
	<u>S1</u>	RUCTURAL	DESIGN (No.	Description	Date
									NOTE CHANGE +	04/30
В.	LIVE LOAD DESIGN LOADS:								STAMP UPDATE	2019
	PARTITION/HVA									
	ROOF LIVE LOA FLOOR/DECK/B	ALCONY			8 2	80 psf 0 psf				
С.	WIND ASCE 7-05				£					
	DESIGN WIND S		ph							
	EXPOSURE = C IMPORTANCE F									
_										
D.	SEISMIC SEISMIC DESIGN			AS	CE 7-05					
	Ss = 1.5 S1 = 0.6			ANSITION PEF	RIOD = 12 SE(С.				
	IMPORTANCE F									
	SEISMIC DESIG	IN CATEGORY	D							
	SEISMIC FORCE RESI MAIN BUILDING		IS:							
	R = 8	OMEGA =	3 Cd		_					
	ELEVATOR/STA R = 5	IR CORE - SPE OMEGA =		EARING WALLS	S					
	-									
	<u>IBC 2009</u>	/ ASCE 7-05		MBINATIO	<u>NS</u>					
D (LOAD AND RE	SISTANCE FACTOR DESIGN								e Center rm. 230	NC.
pg 308 IBC 2009	D	н	F	L	Lr/R	w	E	P.O. E	30x 3207 Agana, Guam 969 (671) 472–8758 or 477–9224	
16-1	1.4		1.4					Fax: 47	7–3456 I: gk2@gk2pacific.com	
16-2b	1.2	1.6	1.2	1.6	0.5					
16-3a	1.2			0.5	1.6					
16-3b	1.2				1.6	0.8				
16-4	1.2			0.5	0.5	1.6				
16-5	1.2			0.5			1			
	(1.2 + 0.2S _{DS})			0.5			ρ			
	(1.2 + 0.2S _{DS})			0.5			Ω。			
16-6	0.9	1.6				1.6				
16-7	0.9	1.6					1	(
	(0.9 - 0.2S DS)	1.6					ρ	/	CUE ER C	
	(0.9 - 0.2S _{DS})	1.6					Ω。	>	STRUCTURAL)	単く
CANT SEISMIC							-0.2 VERT	>	$\begin{array}{c} & \searrow 1781 \\ (STRUCTURAL) \\ + \\ EXP. 04/30/2020 \\ \hline \\ & & \\ &$	2
) (ALLOWABLE S	TRESS DESIGN)								25S/ONAL ENGL	
pg 308 IBC 2009	D	н	F	L	Lr/R	w	E			
16-8	1		1					Ē	EBY CERTIFY THAT THIS PLAN WAS I BY ME OR UNDER MY DIRECT SUPER DATE:	
16-9	1	1	1	1				Pro	oject:	
16-10	1	1	1		1					
16-11	1	1	1	0.75	0.75			1	GMH	
16-12a	1	1	1			1		1		
16-12b	1	1	1				0.7			
	(1 + 0.14S DS)	1	1				0.7ρ	Title	e:	
ASIF = 1.2	(1 + 0.14 <i>S</i> _{DS})	1	1				0.7Ω _	1	GENERAL NOTES	۶c
16-13a	1	1	1	0.75	0.75	0.75			STRUCTURAL DESIG	
16-13b	1	1	1	0.75	0.75		0.525	1	CRITERIA	
	(1 + 0.10S _{DS})	1	1	0.75	0.75		0.525 <i>p</i>	1		
ASIF = 1.2	(1 + 0.10 <i>S</i> _{DS})	1	1	0.75	0.75		0.525Ω	Desi	gned: TG	
16-14	0.6	1				1		Draw		
16-15	0.6	1					0.7	Cheo	cked: TG	
	(1 + 0.14 <i>S DS</i>)	1					0.7 <i>p</i>	Supv	/: TG	
ASIF = 1.2	(1 + 0.14 <i>S</i> _{DS})	1					0.7Ω ₀	Scal	e: AS_SHOW	N
R CANT SEISMIC							-0.2 VERT	Date	00/00/20	17
- DEAD LOAD - LIVE LOAD	W - WIND E - SEISMI				FINED FLUID RAINING FORCE		PERATURF	Proje	ct No. AutoCAD File — —	
- ROOF LIVE LOAD		AL EARTH PRES	SURE		CHANGE, CRE			Draw	ving No.	
								1	S0.1	
							$\cap^n \vee \neg A^n$	1	00.1	
					IF SHEET IS REDUCED PF	LESS THAN 2 RINT - USE GI	2" X 34" RAPHIC SCALES	Sheet	No of	

EMBEDMENT AND LAP NOTES

ALL CONTINUOUS REINFORCEMENT SHALL BE PLACED USING MINIMUM LAP SPLICE LENGTHS AS SHOWN ON TABLE

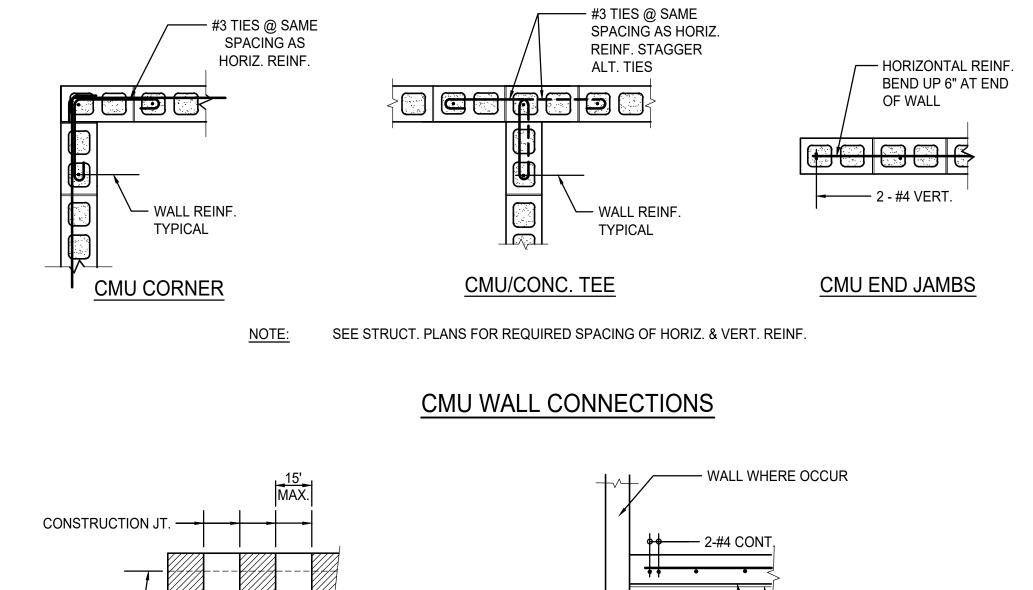
PROVIDE STANDARD ACI318 90 OR 180 DEGREE HOOK IF EMBEDMENT IS LESS THAN MINIMUM SHOWN IN TABLE.

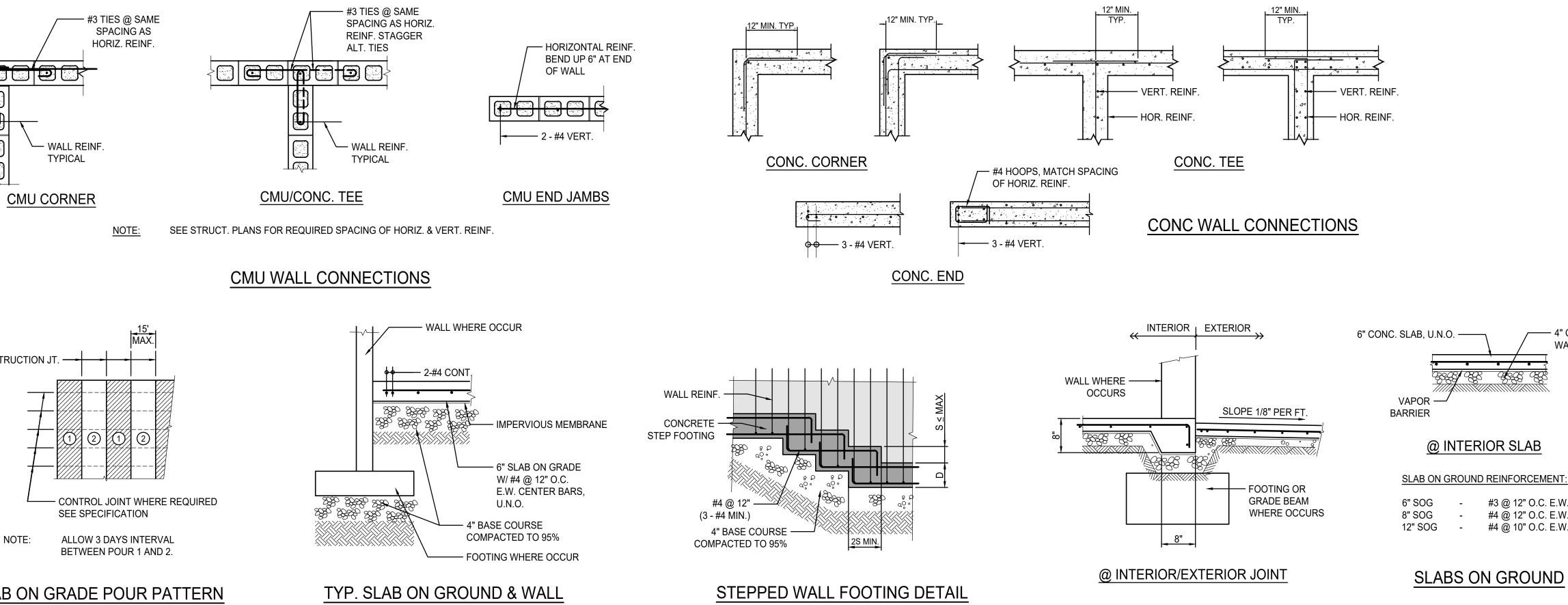
REINFORCEMENT PASSING BETWEEN ELEMENTS (CMU/CONCRETE, SLAB/WALL, BEAM/COLUMN etc.) SHALL HAVE MINIMUM EMBEDMENT ON EACH SIDE OF INTERFACE

FOR SLABS, LOCATED BOTTOM BAR SPLICES ABOVE SUPPORTS, TOP BAR SPLICES AT MID THIRD OF SPAN, STAGGER ALL SPLICES BY NO LESS THAN THE REQUIRED MIN SPLICE LENGTH

FOR DOUBLE CURTAIN WALL REINFORCEMENT STAGGER SPLICES OF TWO CURTAINS BY NO LESS THAN REQUIRED MIN SPLICE LENGTH

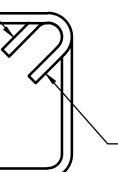
FOR COLUMNS LOCATE VERTICAL BAR SPLICES AT MIDDLE OF CLEAR HEIGHT BETWEEN STORIES

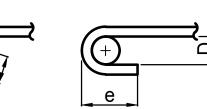

FOR BEAMS LOCATE TOP BAR SPLICES AT MIDSPAN, BOTTOM BAR SPLICES AT THIRD POINTS OF SPAN.

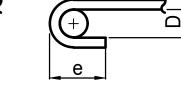

FOR BEAMS AND COLUMNS DO NOT PLACE ANY SPLICES IN BEAM-COLUMN JOINTS

MINIMUM DEVELOPMENT AND SPLICE LENGTHS FOR CMU AND CONCRETE							
BAR	MINIMUM STRAIGHT E	EMBEDMENT (INCHES)	MINIMUM LAP REQUIREMENTS (INCHES)				
SIZE	TOP * OTHERS		TOP *	OTHERS			
#3	22	16	28	22			
#4	28	21	36	28			
#5	36	27	46	36			
#6	42	32	54	42			
#7	48	38	64	48			
#8	56	45	72	56			
#9	64	49	100 64				
* - TOP BARS HAVE MORE THAN 12 INCHES OF FRESH CONCRETE CAST BELOW THEM							

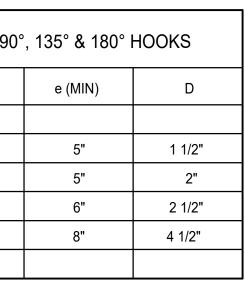
135° HOOK — HOOP STD 135° HOOKS STD 90° HOOKS

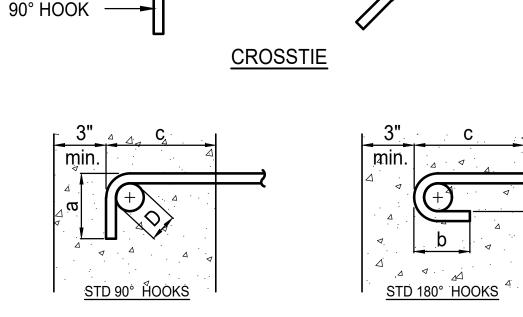

HOOPS & CROSSTIES - STD 90						
BAR SIZE	c (MIN)	d (MIN)				
#3	5"	5"				
#4	5"	5"				
#5	6"	6"				
#6	12"	8"				





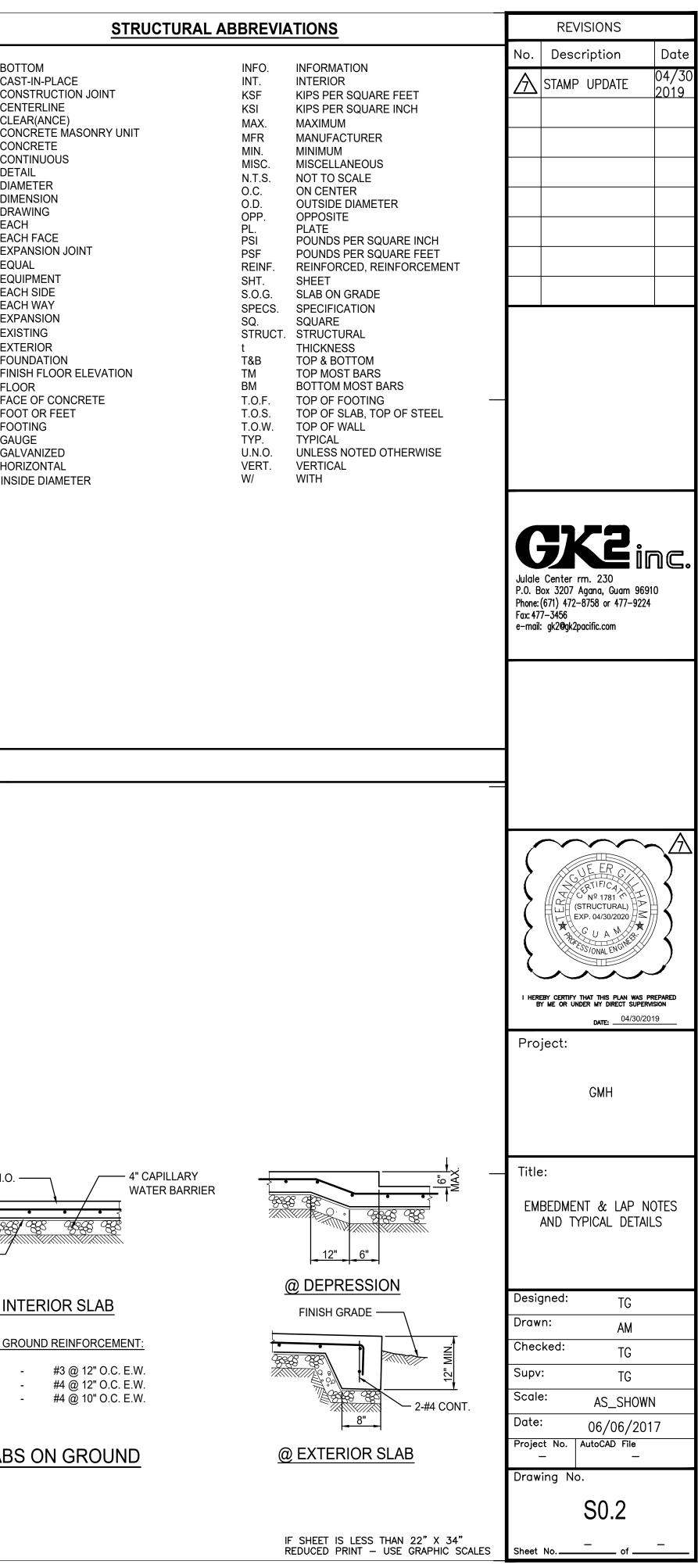
SLAB ON GRADE POUR PATTERN



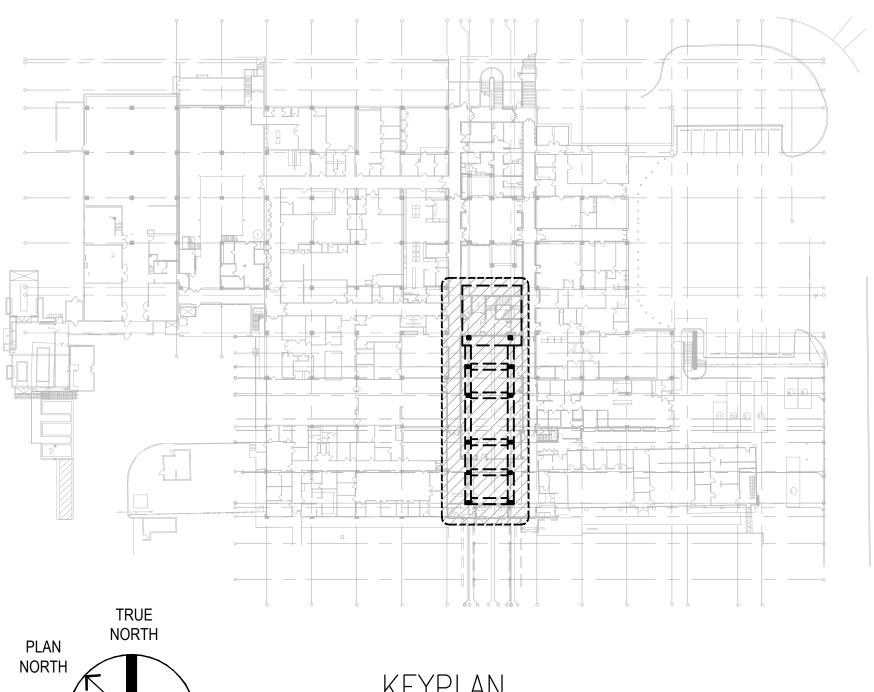


135° HOOK

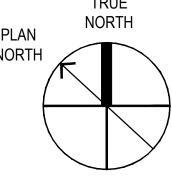
STD 180° HOOKS

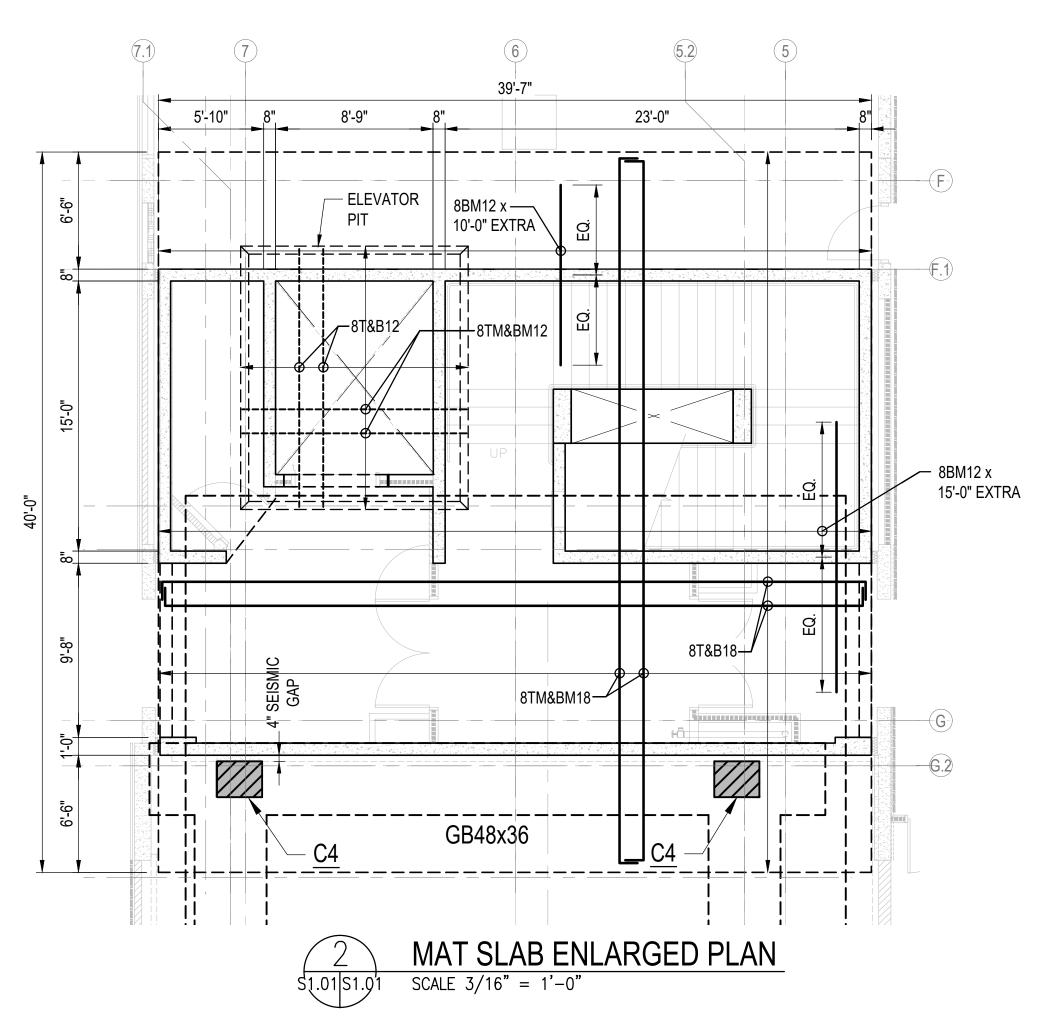


PRIMARY REINFORCING STD 90° and 180° HOOK	


– 135° HOOK

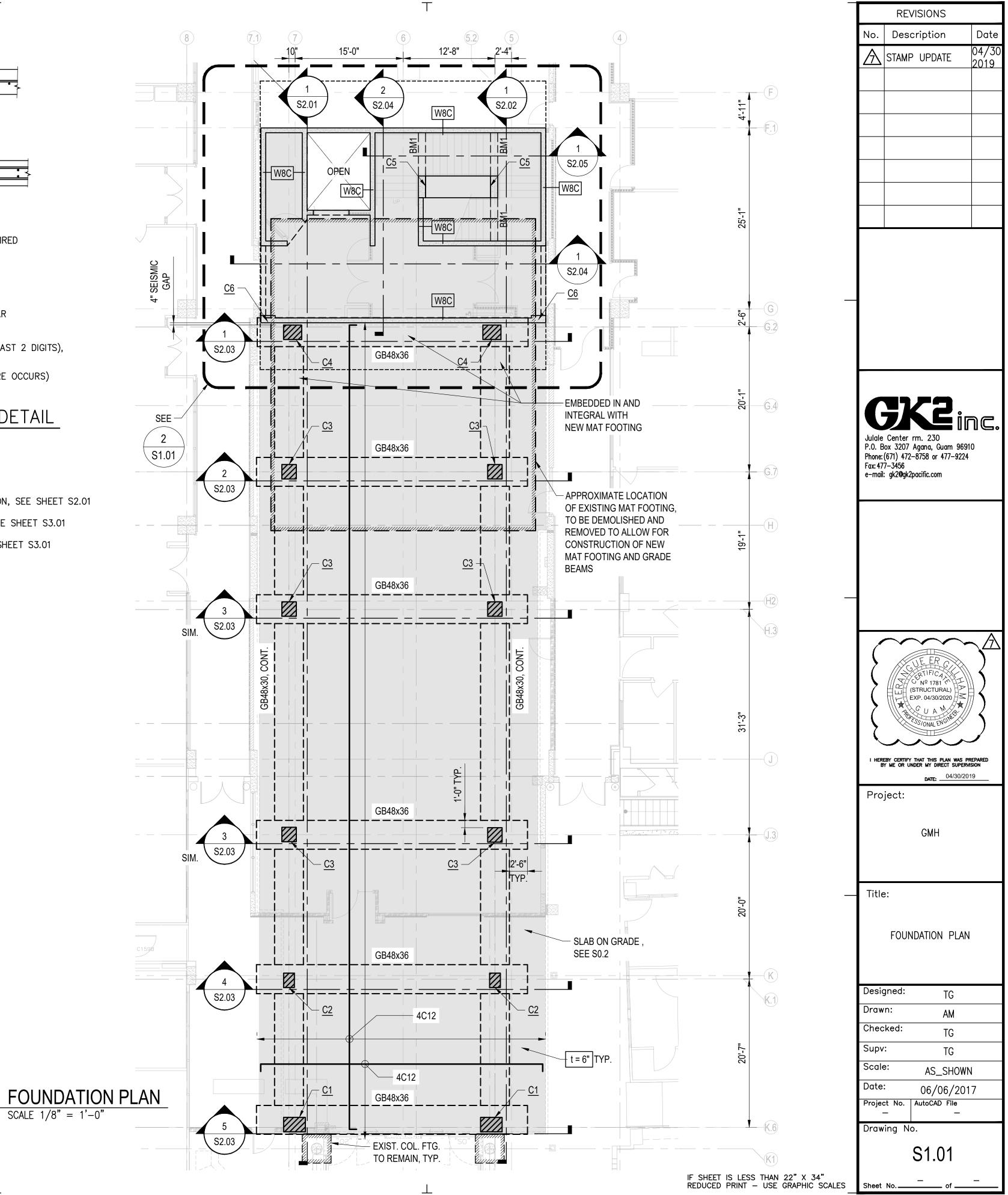
	b (MIIN.)	c (MIN.)	D
6"	6"	9"	2 1/4"
8"	6"	12"	3"
10"	6"	14"	3 3/4"
12"	6	18"	4 1/2"
14"	8"	20"	5 1/4"
16"	8"	22"	6"
19"	15"	25"	9"
21"	17"	28"	10"
	8" 10" 12" 14" 16" 19"	8" 6" 10" 6" 12" 6 14" 8" 16" 8" 19" 15"	8" 6" 12" 10" 6" 14" 12" 6 18" 14" 8" 20" 16" 8" 22" 19" 15" 25"

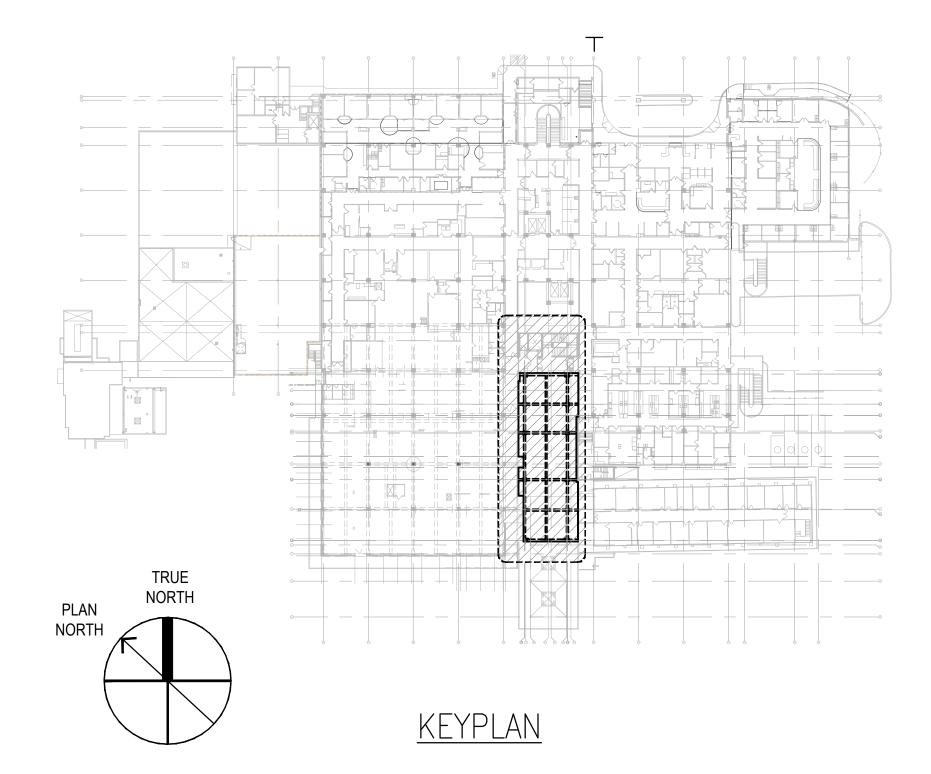

TYPICAL DETAILS

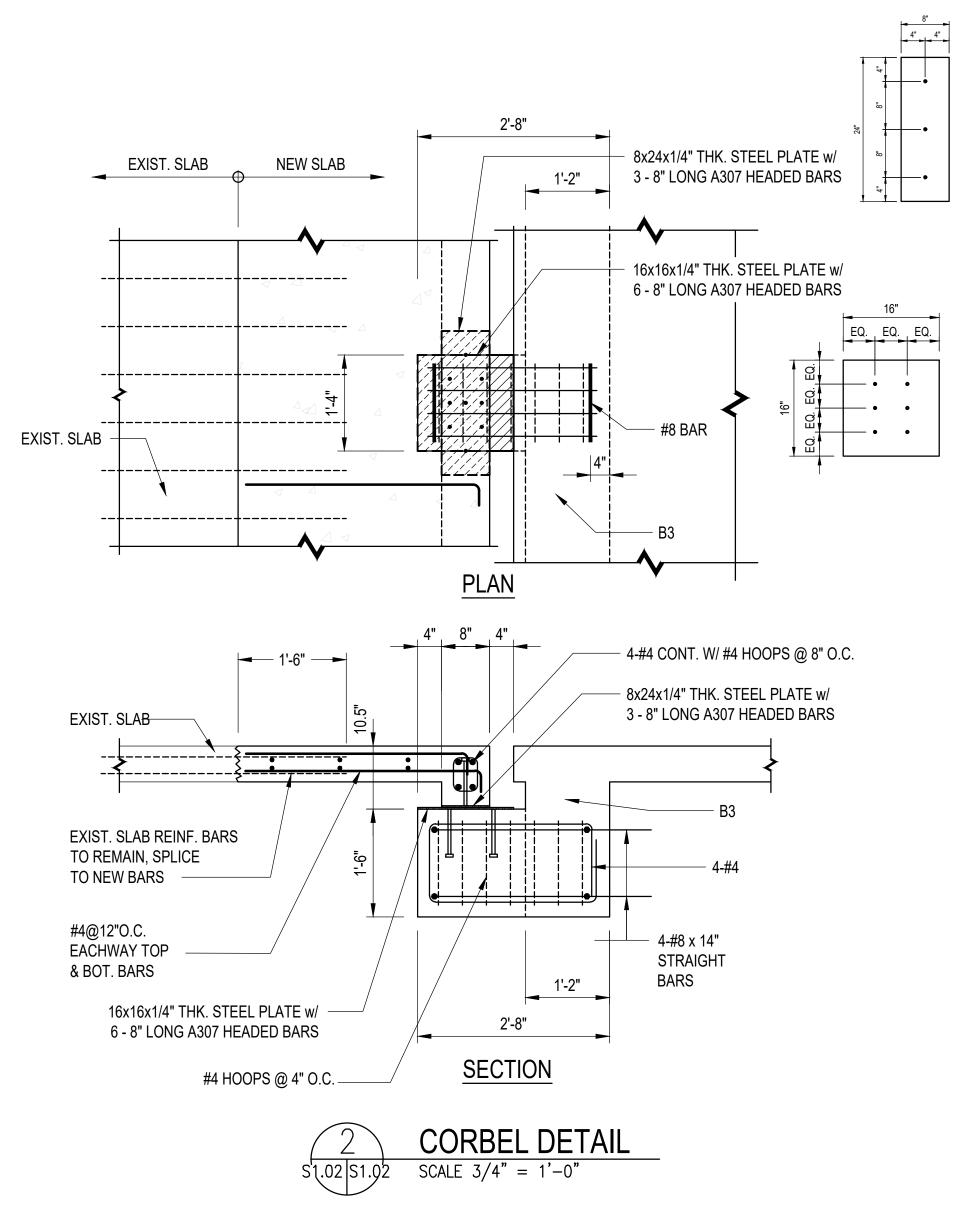

STATEMENT OF SPECIAL INSPECTIONS		SCHEDULE OF INSP	ECTIONS			TABLE 1704.4 - CONCR	RETE				TABLE 1704.3 - STEE	L			REVISIONS
THIS STATEMENT OF SPECIAL INSPECTIONS IS SUBMITTED IN ACCORDANCE WITH THE SPECIAL		SOILS AND FOUNDATIONS	WOOD CONSTRUCTION		ITEM NO	DESCRIPTION	PERIODIC	CONTINUOUS	AGENCY # (QUALIF.)	ITEM NO.	DESCRIPTION	PERIODIC		AGENCY # (QUALIF.)	No. Description Date
INSPECTION AND STRUCTURAL TESTING REQUIREMENTS OF THE 2009 INTERNATIONAL BUILDING CODE (200928C)				AL SYSTEMS	8	INSPECTION OF MAINTENANCE OF SPECIFIED CURING TEMPERATURE AND TECHNIQUES.			ACI-CCI,	6	TABLE 1704.3 - INSPECTION OF STEEL FRAME JOINT DE	TAILS FOR COMP	· · · · · · · · · · · · · · · · · · ·	PE/SE	STAMP UPDATE
THIS STATEMENT OF SPECIAL INSPECTIONS ENCOMPASS THE FOLLOWING DISCIPLINES:									ICC-RCSI		WITH APPROVED CONSTRUCTION DOCUMENTS. SCOPE:				ZA STAMP UPDATE 2019
STRUCTURAL SPECIAL INSPECTIONS PER 1704 AND 1705				-		INSPECTION OF PRESTRESSED CONCRETE. SCOPE:					A. DETAILS SUCH AS BRACING AND STIFFENING	$\mathbf{\times}$			
STRUCTURAL SPECIAL INSPECTIONS FOR SEISMIC RESISTANCE		-		AMING	9	A. APPLICATION OF PRESTRESSING FORCES.		\times	ACI-CCI, ICC-RCSI		B. MEMBER LOCATIONS	\times			
STRUCTURAL SPECIAL INSPECTIONS FOR WIND RESISTANCE					_	b. GROUTING OF BONDED PRESTRESSING					C. APPLICATION OF JOINT DETAILS AT EACH				
THIS SCHEDULE OF SPECIAL INSPECTIONS SUMMARIZES THE SPECIAL INSPECTIONS AND TEST		DESIGNATED SEISMIC FORCE	RESISTING SYSTEMS	S		TENDONS IN THE SEISMIC FORCE-RESISTING SYSTEM.					CONNECTION			-	
REQUIRED. SPECIAL INSPECTORS WILL REFER TO THE APPROVED PLANS AND SPECIFICATIONS FOR DETAILED SPECIAL REQUIREMENTS. ANY ADDITIONAL TESTS AND INSPECTIONS REQUIRED	SEISMIC	C DESIGN CATEGORY 'D'			10	ERECTION OF PRECAST CONCRETE MEMBERS.	\times		ACI-CCI, ICC-RCSI	7	SECTION 1704.3 - WELDED STUDS WHEN USED FOR STRUCTURAL DIAPHRAGMS	$\mid \times \mid$	AWS	S-CWI, ASNT	
BY THE APPROVED PLANS AND SPECIFICATIONS WILL ALSO BE PERFORMED.		IPTION OF SEISMIC-FORCE-RESISTING SYSTEM AND DE	ESIGNATED SEISMIC SYSTEMS	S SUBJECT TO		VERIFICATION OF IN-SITU CONCRETE STRENGTH,					SECTION 1704.3 - WELDED COLD-FORMED SHEET		AWS	S-CWI, ASNT	
THE SPECIAL INSPECTIONS IDENTIFIED ARE IN ADDITION TO THOSE REQUIRED BY OTHER SECTIONS OF THE BUILDING CODE.	SPECIA	L INSPECTIONS AS PER SECTION 1705.3:			11	PRIOR TO STRESSING OF TENDON IN POST-TENSIONED CONCRETE AND PRIOR TO			ACI-CFTT, ACI-STT	8	STEEL FRAMING MEMBERS	X			
THE SPECIAL INSPECTIONS IDENTIFIED ARE IN ADDITION TO THOSE REQUIRED BY OTHER		GMH - SPECIAL REINFORCED CONCRETE	SHEAR WALLS			REMOVAL OF SHORES AND FORMS FROM BEAMS AND STRUCTURAL SLABS.				9	SECTION 1704.3 - WELDING OD STAIRS AND RAILING SYSTEMS	$\mid \times \mid$	AWS	S-CWI, ASNT	
SECTIONS OF THE BUILDING CODE.		TENT OF THE SEISMIC-FORCE-RESISTING SYSTEM IS D	DEFINED IN MORE DETAIL IN T	HE CONSTRUCTION	ı 12	INSPECT FORMWORK FOR SHAPE, LOCATION, AND			ACI-CCI,		SECTION 1704.2.1 - INSPECT FABRICATOR'S		AWS	S-CWI, ASNT	
THE SPECIAL INSPECTION COORDINATOR SHALL KEEP RECORDS OF ALL INSPECTIONS AND SHALL FURNISH INSPECTION REPORTS TO THE COTR AND THE REGISTERED DESIGN	DOCUM	ENTS.				DIMENSIONS OF THE CONCRETE MEMBER BEING FORMED.			ICC-RCSI	10	FABRICATION AND QUALITY CONTROL PROCEDURES				
PROFESSIONAL IN RESPONSIBLE CHARGE. DISCOVERED DISCREPANCIES SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE CONTRACTOR FOR CORRECTION. IF SUCH	<u>ITEM 7:</u>	1707.7 - MECHANICAL AND ELECTRICAL COMPONENTS	3				 FI	11			TABLE 1704.5.1 - M				
DISCREPANCIES ARE NOT CORRECTED, THE DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE BUILDING OFFICIAL AND THE REGISTERED DESIGN PROFESSIONAL IN		SCOPE:	PERIODIC	CONTINUOUS			1		AGENCY #			1			
RESPONSIBLE CHARGE. THE SPECIAL INSPECTION PROGRAM DOES NOT RELIEVE THE CONTRACTOR OF HIS OR HER RESPONSIBILITIES.	A. II	NSPECT ANCHORAGE OF ELECTRICAL EQUIPMENT			ITEM NO		PERIODIC		(QUALIF.)	ITEM NO.	COMPLIANCE WITH REQUIRED INSPECTION	PERIODIC		EFERENCE	
	F	OR EMERGENCY OR STAND-BY POWER SYSTEMS.				TABLE 1704.3 - MATERIAL VERIFICATION OF HIGH-STRENGTH BOLTS, NUTS, AND WASHERS.		AM	VS/AISC-SSI, ICC-SWSI	1	PROVISIONS OF THE CONSTRUCTION DOCUMENTS AND THE APPROVED SUBMITTALS SHALL BE VERIFIED.	$\mid X \mid$		MS 602/ACI 0.1/ASCE 6ª	
INTERIM REPORTS SHALL BE SUBMITTED TO THE OWNER AND THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE IN ACCORDANCE WITH THE SECTION 1704.1.2.		NSPECT ANCHORAGE OF NON-EMERGENCY ELECTRICAL EQUIPMENT.			1	SCOPE:									
A FINAL REPORT OF SPECIAL INSPECTIONS DOCUMENTING COMPLETION OF ALL REQUIRED		NSPECT INSTALLATION OF PIPING SYSTEMS AND			-	A. IDENTIFICATION MARKINGS TO CONFORM TO CONFORM TO ASTM STANDARDS SPECIFIED IN				2	VERIFICATION OF f'm AND f'AAC PRIOR TO CONSTRUCTION EXCEPT WHERE SPECIFICALLY	$\mid X \mid$		MS 602/ACI 0.1/ASCE 6ª	
SPECIAL INSPECTIONS, TESTING AND CORRECTIONS OF ANY DISCREPANCIES NOTED IN THE INSPECTIONS SHALL BE SUBMITTED PER SECTION 1704.1.2. THE FINAL REPORT WILL DOCUMENT	A	ASSOCIATED MECHANICAL UNITS CARRYING				THE APPROVED CONSTRUCTION DOCUMENTS.					EXEMPTED BY THIS CODE.				GK2ing
THE REQUIRED SPECIAL INSPECTIONS AND CORRECTION OF DISCREPANCIES NOTED IN INSPECTIONS.		CONTENTS.				B. MANUFACTURER'S CERTIFICATE OF COMPLIANCE REQUIRED.				3	VERIFICATION OF SLUMP FLOW AND VSI AS DELIVERED TO THE SITE FOR SELF-CONSOLIDATING			MS 602/ACI 0.1/ASCE 6ª	Julale Center rm. 230
JOB SITE SAFETY AND MEANS AND METHODS OF CONSTRUCTION ARE SOLELY THE		NSPECT INSTALLATION OF HVAC DUCTWORK THAT				TABLE 1704.3 - INSPECTION OF HIGH-STRENGTH			VS/AISC-SSI,		GROUT				P.O. Box 3207 Agana, Guam 96910 Phone:(671) 472–8758 or 477–9224
RESPONSIBILITY OF THE CONTRACTOR.		NSPECT INSTALLATION OF VIBRATION OF ISOLATION			_	BOLTING. SCOPE:			ICC-SWSI	4	AS MASONRY CONSTRUCTION BEGINS, THE FOLLOWING SHALL BE VERIFIED TO ENSURE			MS 602/ACI 0.1/ASCE 6ª	Fax: 477–3456 e-mail: gk2@gk2pacific.com
THE CONTRACTOR IS REQUIRED TO COORDINATE ALL INSPECTIONS. THE CONTRACTOR SHALL NOTIFY THE COTR AND THE SPECIAL INSPECTOR A MINIMUM OF 24 HOURS PRIOR TO ANY		SYSTEMS WHERE REQUIRED BY SECTION 1707.8.			2	A. SNUG-TIGHT JOINTS					COMPLIANCE:				
SPECIAL INSPECTIONS THAT ARE REQUIRED. THE CONTRACTOR SHALL NOTIFY THE OWNER AND THE SPECIAL INSPECTOR A MINIMUM OF 24 HOURS PRIOR TO ANY CONCRETE TO BE POURED.		TABLE 1704.7 - INSPEC	TION OF SOILS			B. PRETENSIONED AND SLIP-CRITICAL JOINTS					A. PROPORTIONS OF SITE-PREPARED MORTAR.	\times			
THE INSPECTORS AND TESTING AGENCIES SHALL BE ENGAGED BY THE OWNER, AND NOT BY	ITEM NO.	DESCRIPTION	PERIODIC CONTINU		1	USING TURN-OF-NUT WITH MATCHMARKING, TWIST-OFF BOLT OR DIRECT TENSION					B. CONSTRUCTION OF MORTAR JOINTS.	\times			
THE CONTRACTOR OR SUBCONTRACTOR WHOSE WORK IS TO BE INSPECTED OR TESTED PER SECTION 1704.1. ANY CONFLICT OF INTEREST MUST BE DISCLOSED TO THE COTR PRIOR TO				(QUALIF.)	_	INDICATOR METHODS OF INSTALLATION.					C. LOCATION OF REINFORCEMENT, CONNECTORS, PRESTRESSING TENDONS				
COMMENCING WORK. IF APPROPRIATE AGENTS ARE NOTED AS "TO BE DETERMINED (TBD)", THE COTR IS RESPONSIBLE TO COORDINATE THE ASSEMBLY OF A SPECIAL INSPECTION TEAM.	1	VERIFY MATERIALS BELOW FOOTINGS ARE ADEQUATE TO ACHIEVE THE DESIRED BEARING		PE/GE		C. PRETENSIONED AND SLIP-CRITICAL JOINTS USING TURN-OF-NUT WITHOUT MATCHMARKING,					AND ANCHORAGES.				
					_	OR CALIBRATED WRENCH METHODS OF INSTALLATION.					D. PRESTRESSING TECHNIQUE	\times		_	
IS SUBJECT TO REMOVAL.	2	VERIFY EXCAVATIONS ARE EXTENDED TO PROPER DEPTH AND HAVE REACHED PROPER MATERIAL.		PE/GE		TABLE 1704.3 - MATERIAL VERIFICATION OFS			PE/SE		E. GRADE AND SIZE PRESTRESSING TENDONS AND ANCHORAGES	$ $ \times $ $			
CONTINUOUS INSPECTION IS ALWAYS REQUIRED DURING THE PERFORMANCE OF THE WORK UNLESS OTHERWISE SPECIFIED. WHEN WORK IN MORE THAN CATEGORY OF WORK REQUIRING		PERFORM CLASSIFICATION AND TESTING OF				STRUCTURAL STEEL AND COLD-FORMED STEEL DECK.			FL/SL		DURING CONSTRUCTION THE INSPECTION PROGRAM				
SPECIAL INSPECTION IS TO BE PERFORMED SIMULTANEOUSLY, OR THE GEOGRAPHIC LOCATION OF THE WORK IS SUCH THAT IT CANNOT BE CONTINUOUSLY OBSERVED. IT IS THE OWNER'S	3	CONTROLLED FILL MATERIALS. PERFORM SIEVE TESTS (ASTM D422 & D11400; ATTERBERG LIMIT		PE/GE	3					5	SHALL VERIFY:				
RESPONSIBILITY TO EMPLOY A SUFFICIENT NUMBER OF INSPECTORS TO ASSURE THAT ALL THE WORK IS INSPECTED IN ACCORDANCE WITH THE PROVISIONS OF THE BUILDING CODE.		TEST (ASTM D4318) AND MODIFIED PROCTOR TESTS (ASTM D1557) OF EACH SOURCE OF FILL MATERIAL.				A. IDENTIFICATION MARKINGS TO CONFORM TO CONFORM TO ASTM STANDARDS SPECIFIED IN					A. SIZE & LOCATION OF STRUCTURAL ELEMENTS.	$ $ \times $ $		MS 602/ACI 0.1/ASCE 6ª	C L LI C RTIFICA
		VERIFY USE OF PROPER MATERIALS, DENSITIES			_						B. TYPE, SIZE AND LOCATION OF ANCHORS,				(STRUCTURAL) → + + + + + + + + + + + + + + + + + + +
		AND LIFT THICKNESS DURING PLACEMENT AND COMPACTION OF CONTROLLED FILL. TEST DENSITY	Y			B. MANUFACTURER'S MILL TEST REPORTS TABLE 1704.3 - MATERIAL VERIFICATION OF WELD					INCLUDING OTHER DETAILS OF ANCHORAGE OF MASONRY TO STRUCTURAL MEMBERS.			MS 402/ACI 604/ASCE 5ª	
	-	OF EACH LIFT OF FILL BY NUCLEAR METHODS (ASTI D6938) OR SAND CONE (ASTM D1556). VERIFY	M			FILLER MATERIALS.			AWS-CWI		FRAMES OR OTHER CONSTRUCTION.				CSS/ONAL ENGI
QUALIFICATIONS OF INSPECTORS AND TESTING TECHNICIANS	4	EXTENT AND SLOPE OF FILL PLACEMENT. VERIFY COMPACTION OF FILL AND BACKFILL MATERIAL TO		/	4						C. SPECIFIED SIZE, GRADE AND TYPE OF REINFORCEMENT, ANCHOR BOLTS,			S 402 & 602/ 530 & 530.1/	I HEREBY CERTIFY THAT THIS PLAN WAS PREPARED
THE QUALIFICATIONS OF ALL PERSONNEL PERFORMING SPECIAL INSPECTION AND TESTING		95 PERCENT OF ASTM D 1557, TEST EACH LIFT AT RANDOMLY SELECTED LOCATIONS EVERY 1000		×		A. IDENTIFICATION MARKINGS TO CONFORM TO CONFORM AWS SPECIFICATION IN THE					PRE-STRESSING TENDONS AND ANCHORAGES.			ASCE 6 ^a	I HEREBY CERTIFY THAT THIS PLAN WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION DATE: 04/30/2019
ACTIVITIES ARE SUBJECT TO THE APPROVAL OF THE BUILDING OFFICIAL. THE CREDENTIALS OF ALL INSPECTORS AND TESTING TECHNICIANS SHALL BE PROVIDED IF REQUESTED.		SQUARE FEET OF FILL OR 50 LINEAR FOOT OF WALL OR CONTINUOUS FOOTING, WHICHEVER IS		PE/GE		APPROVED CONSTRUCTION DRAWINGS.					D. WELDING OF REINFORCING BARS.			MS 402/ACI 04/ASCE 5ª	Project:
KEY FOR MINIMUM QUALIFICATIONS OF INSPECTION AGENTS:		GREATER. PERFORM A MINIMUM OF ONE TEST PER ISOLATED FOOTING. PERFORM 3 TEST MINIMUM				B. MANUFACTURER'S CERTIFICATE OF COMPLIANCE REQUIRED.					E. PREPARATION CONSTRUCTION AND PROTECTION OF MASONRY DURING COLD			MS 602/ACI	
WHEN THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE DEEMS IT		PER LIFT.				TABLE 1704.3 - INSPECTION OF WELDING.	1	· · · · · · · · · · · · · · · · · · ·	AWS-CWI		WEATHER (TEMPERATURE BELOW 40°F) OR HOT WEATHER (TEMPERATURE ABOVE 90°)	$\mid X \mid$		0.1/ASCE 6ª/ IBC 2009	GMH
APPROPRIATE THAT THE INDIVIDUAL PERFORMING A STIPULATED TEST OR INSPECTION HAVE A SPECIFIC CERTIFICATION OR LICENSE AS INDICATED BELOW, SUCH DESIGNATION SHALL APPEAR		PRIOR TO PLACEMENT OF CONTROLLED FILL, OBSERVE SUBGRADE AND VERIFY THAT SITE HAS			5						F. APPLICATION AND MEASUREMENT OF				
BELOW THE AGENCY NUMBER ON THE SCHEDULE.	5	BEEN PREPARED PROPERLY.		PE/GE	5	A. STRUCTURAL STEEL AND COLD-FORMED STEEL DECK.					PRESTRESSING FORCE.			MS 602/ACI 0.1/ASCE 6ª	
PE/SE STRUCTURAL ENGINEER A LICENSED SE OR PE SPECIALIZING IN THE DESIGN OF BUILDING STRUCTURES.	NOTES:	SEE GENERAL STRUCTURAL NOTES AND/OR B	DOCUMENTS FOR REFERE	INCE	7	1. COMPLETE AND PARTIAL JOINT					PRIOR TO GROUTING, THE FOLLOWING SHALL BE VERIFIED TO ENSURE COMPLIANCE:	I			Title:
PE/GE GEOTECHNICAL ENGINEER A LICENSED GE OR PE SPECIALIZING IN SOIL MECHANICS AND FOUNDATIONS		GEOTECHNICAL REPORT.			_					6	A. GROUT SPACE IS CLEAN.	\times		MS 602/ACI	STATEMENT OF SPECIAL
EIT ENGINEER-IN-TRAINING A GRADUATE ENGINEER WHO HAS PASSED THE FUNDAMENTALS OF ENGINEERING EXAMINATION		TABLE 1704.4 - C	ONCRETE			2. MULTIPASS FILLET WELDS					B. PLACEMENT OF REINFORCEMENT AND			0.1/ASCE 6ª	INSPECTION
AMERICAN CONCRETE INSTITUTE (ACI) CERTIFICATION	ITEM NO.	DESCRIPTION	PERIODIC CONTINU	JOUS AGENCY #		3. SINGLE PASS FILLET WELDS > 5/16"					CONNECTORS, AND PRESTRESSING TENDONS AND ANCHORAGES.	$\mid X \mid$	ACI 5	8 402 & 602/ 530 & 530.1/ ASCE 6ª	
ACI-CFTT CONCRETE FIELD TESTING TECHNICIAN - GRADE 1	1	INSPECTION OF REINFORCING STEEL AND PLACEME	NT.	ACI-CCI, ICC-RCSI	1	4. PLUG AND SLOT WELDS					C. PROPORTIONS OF SITE-PREPARED GROUT				
ACI-CCI CONCRETE CONSTRUCTION INSPECTOR ACI-LTT LABORATORY TESTING TECHNICIAN - GRADE 1&2		INSPECTION OF REINFORCING STEEL WELDING IN		ACI-CCI,	1	5. SINGLE PASS FILLET WELDS <= 5/16"	\times	<u> </u>			AND PRESTRESSING GROUT FOR BONDED TENDONS.	$\mid X \mid$		MS 602/ACI 0.1/ASCE 6ª	Designed: TG
ACI-STT STRENGTH TESTING TECHNICIAN	2	ACCORDANCE WITH TABLE 1704.3, ITEM 5B.		ICC-RCSI	_	6. FLOOR AND ROOF DECK WELDS					D. CONSTRUCTION OF MORTAR JOINTS.	\times		MS 602/ACI	Drawn: AM
AMERICAN WELDING SOCIETY (AWS) CERTIFICATION	3	INSPECT BOLTS TO BE INSTALLED IN CONCRETE PRI TO AND DURING PLACEMENT OF CONCRETE.		ACI-CCI, ICC-RCSI		B. REINFORCING STEEL					GROUT PLACEMENT SHALL BE VERIFIED TO ENSURE			0.1/ASCE 6ª	Checked: TG
AWS-CWICERTIFIED WELDING INSPECTORAWS/AISC-SSICERTIFIED STRUCTURAL STEEL INSPECTOR		INSPECTION OF ANCHORS INSTALLED IN HARDENED		ACI-CFTT,	-	1. VERIFICATION OF WELDABILITY OF REINFORCING STEEL OTHER THAN	\mid \times			-	COMPLIANCE:			0.1/ASCE 6 ^a	Supv: TG
INTERNATIONAL CODE COUNCIL (ICC) CERTIFICATION	4	CONCRETE.		ACI-STT	4	ASTM A706.					A. GROUTING OF PRESTRESSING BONDED				Scale: AS_SHOWN
ICC-SMSI STRUCTURAL MASONRY SPECIAL INSPECTOR	5	VERIFYING USE OF REQUIRED DESIGN MIX.		ACI-CCI, ICC-RCSI		2. REINFORCING STEEL-RESISTING FLEXURAL AND AXIAL FORCES IN INTERMEDIATE AND		$ \times $			TENDONS.				Date: 06/06/2017 Project No. AutoCAD File
ICC-SWSI STRUCTURAL STEEL AND WELDING SPECIAL INSPECTOR ICC-SFSI SPRAY-APPLIEDFIREPROOFING SPECIAL INSPECTOR		AT TIME FRESH CONCRETE IS SAMPLED TO FABRICA SPECIMENS FOR STRENGTH TESTS, PERFORM SLUW		ACI-CCI,		SPECIAL MOMENT FRAMES AND BOUNDARY ELEMENTS OF SPECIAL REINFORCED				8	PREPARATION OF ANY REQUIRED GROUT SPECIMENS, MORTAR SPECIMENS AND/OR PRISMS SHALL BE	$\mid \mathbf{X} \mid$	530	MS 602/ACI 0.1/ASCE 6ª/	
ICC-RCSI REINFORCED CONCRETE SPECIAL INSPECTOR	6	AND AIR CONTENT TESTS AND DETERMINE THE TEMPERATURE OF THE CONCRETE.		ICC-RCSI		CONCRETE SHEAR WALLS, AND SHEAR REINFORCEMENT.					OBSERVED.			IBC 2009	Drawing No.
		INSPECTION OF CONCRETE PLACEMENT FOR PROPE		ACI-CCI,	-	3. SHEAR REINFORCEMENT									S0.3
	7	APPLICATION TECHNIQUES.		ICC-RCSI		4. OTHER REINFORCING STEEL	$\mathbf{\times}$						S LESS THAN 22" X		Sheet No
				•								REDUCED P	ININI - USE GRAPH	IIU JUALES	Sheet No of

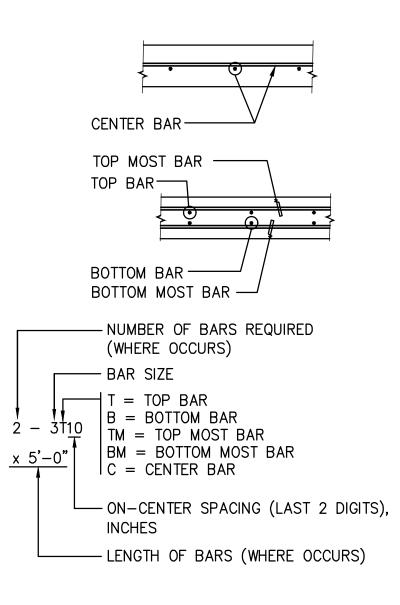
Т

<u>KEYPLAN</u>

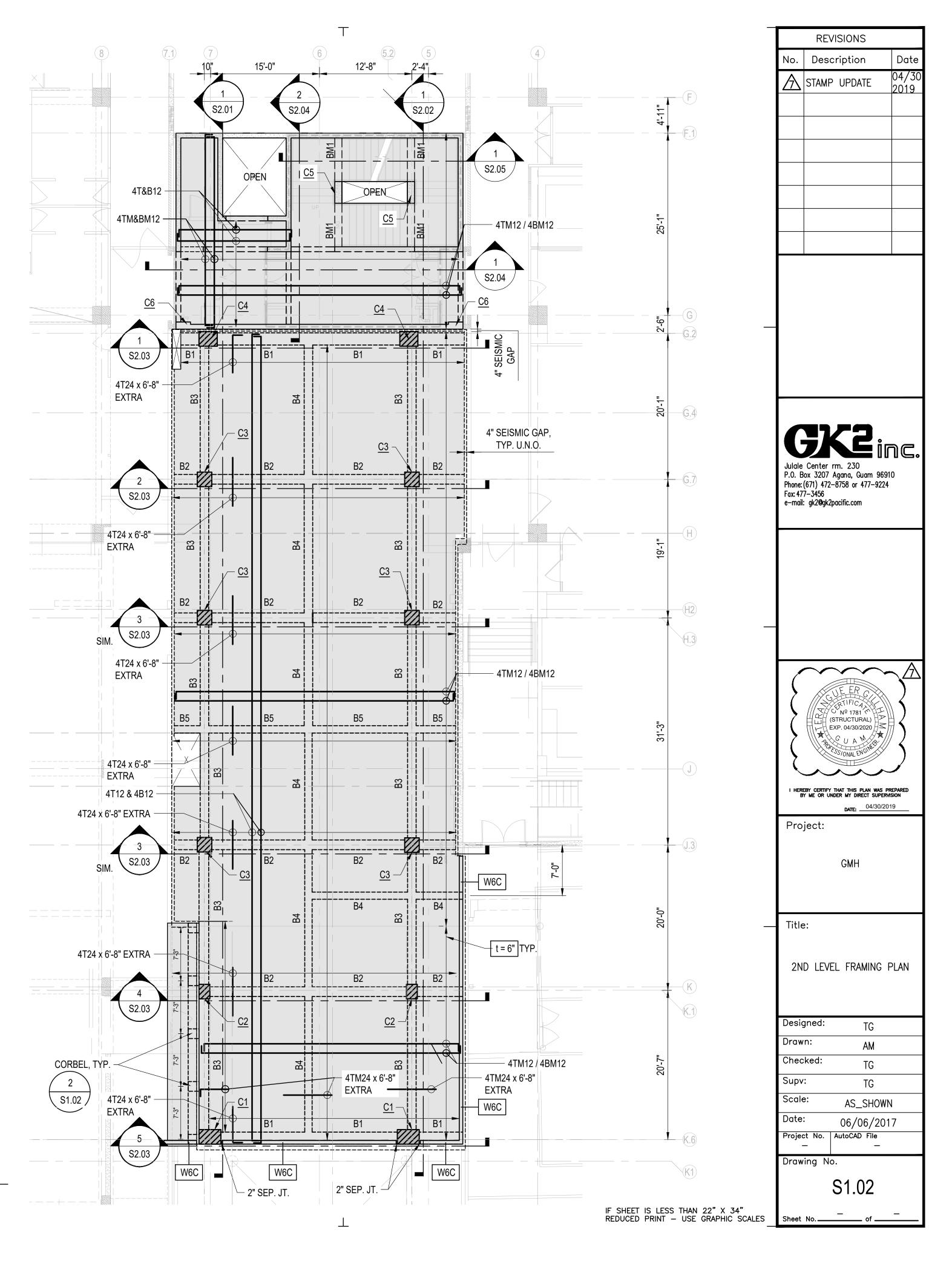


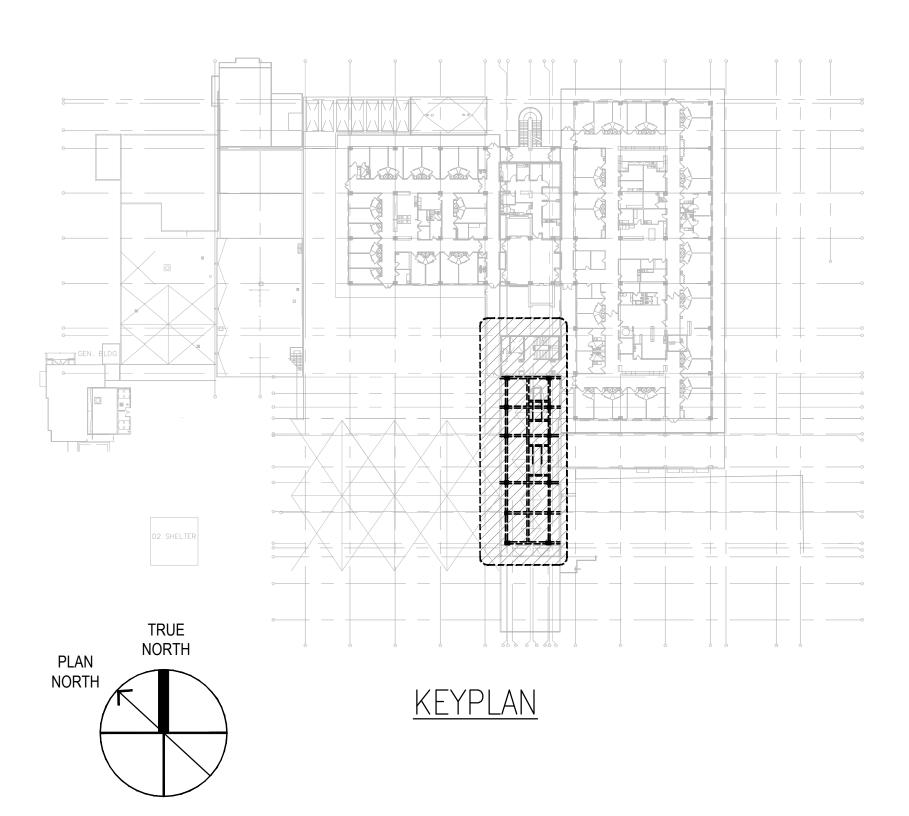



LEGEND:

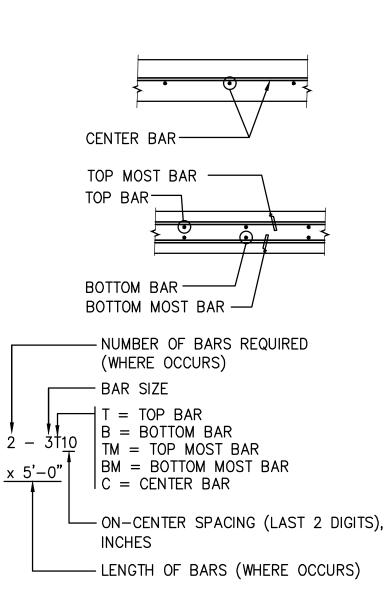

<u>GBxx</u>	GRADE BEAM DESIGNATION, SEE SHEET S2.01
<u>C1</u>	COLUMN DESIGNATION, SEE SHEET S3.01
W8C	WALL DESIGNATION, SEE SHEET S3.01

\$1.01 \$1.01




SLAB REINF. DETAIL

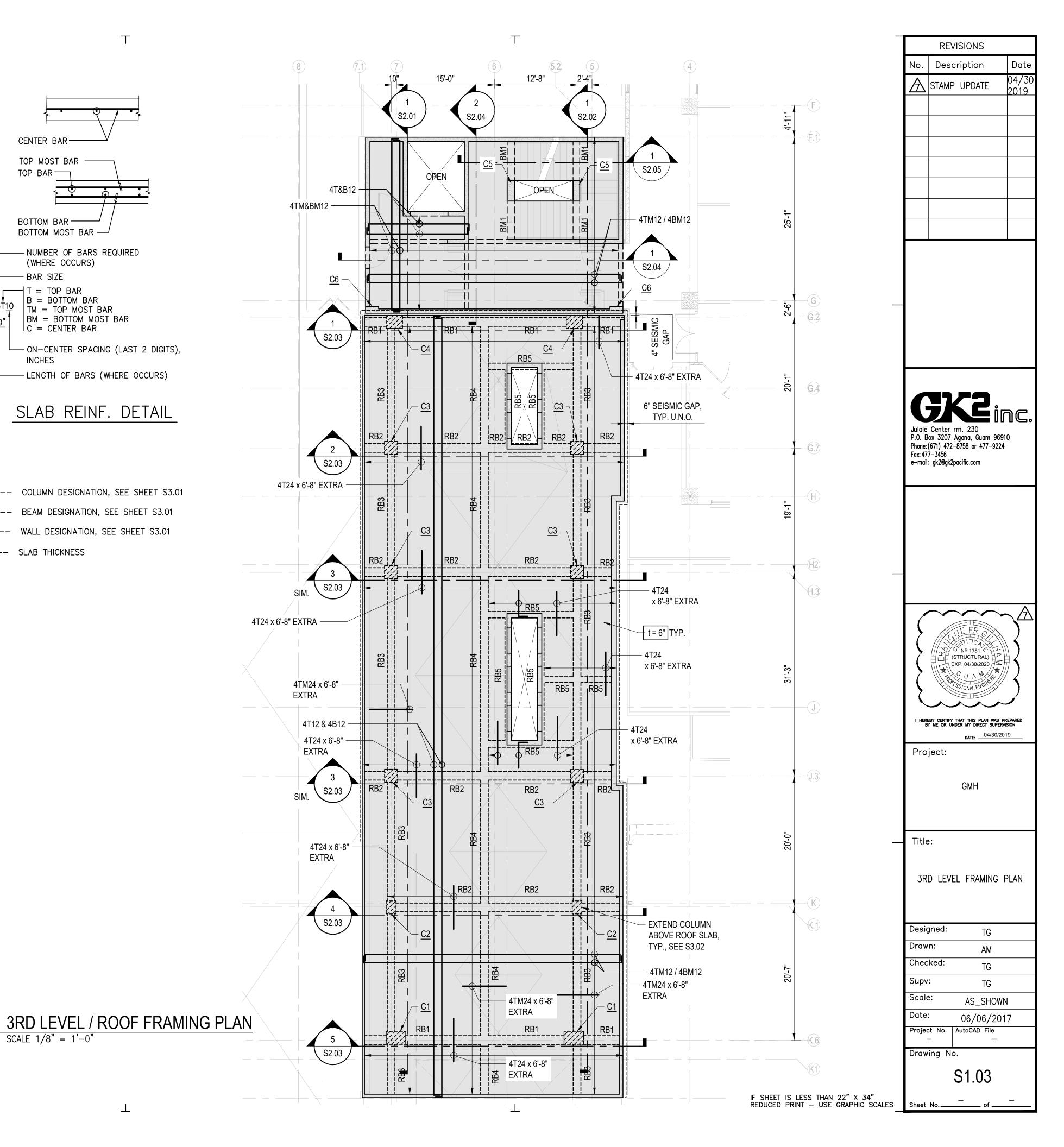
LEGEND:

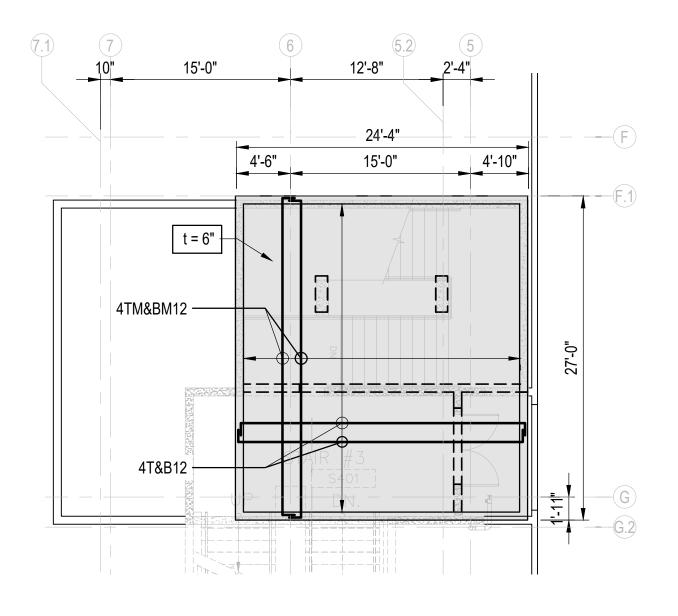

<u>C1</u>	COLUMN DESIGNATION, SEE SHEET S3.01
B1	BEAM DESIGNATION, SEE SHEET S3.01
W8C	WALL DESIGNATION, SEE SHEET S3.01
t=6"	SLAB THICKNESS

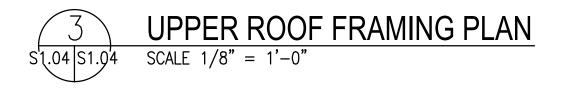
 $\begin{array}{c|c} 1 \\ \hline \\ $1.02 \\ 1.02

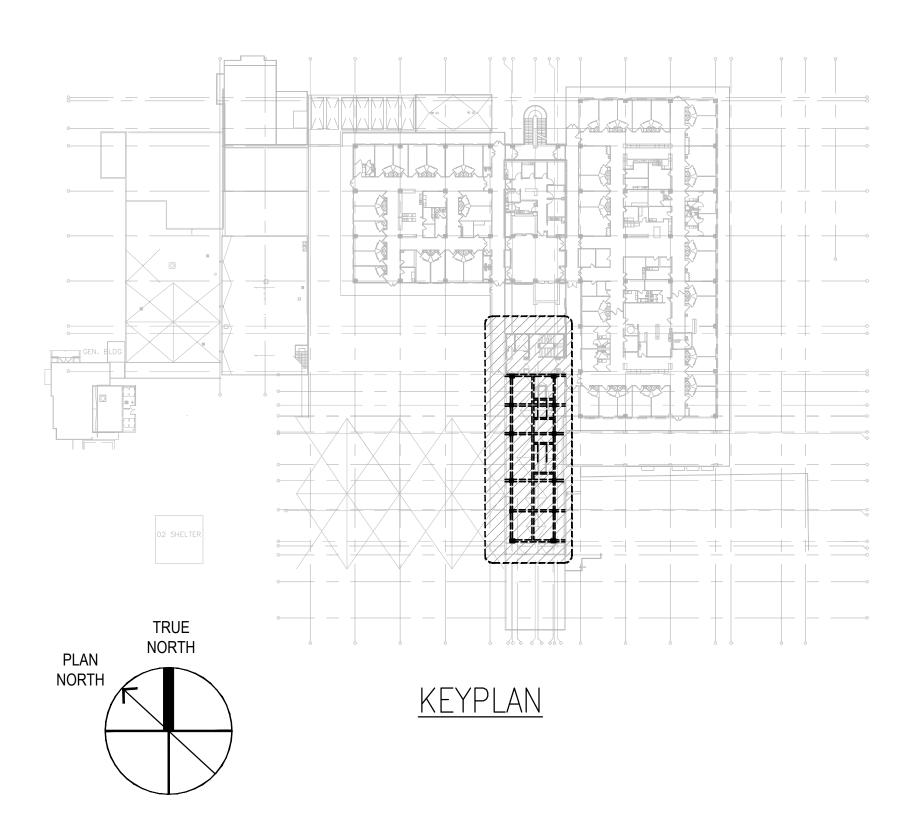
Т

Т

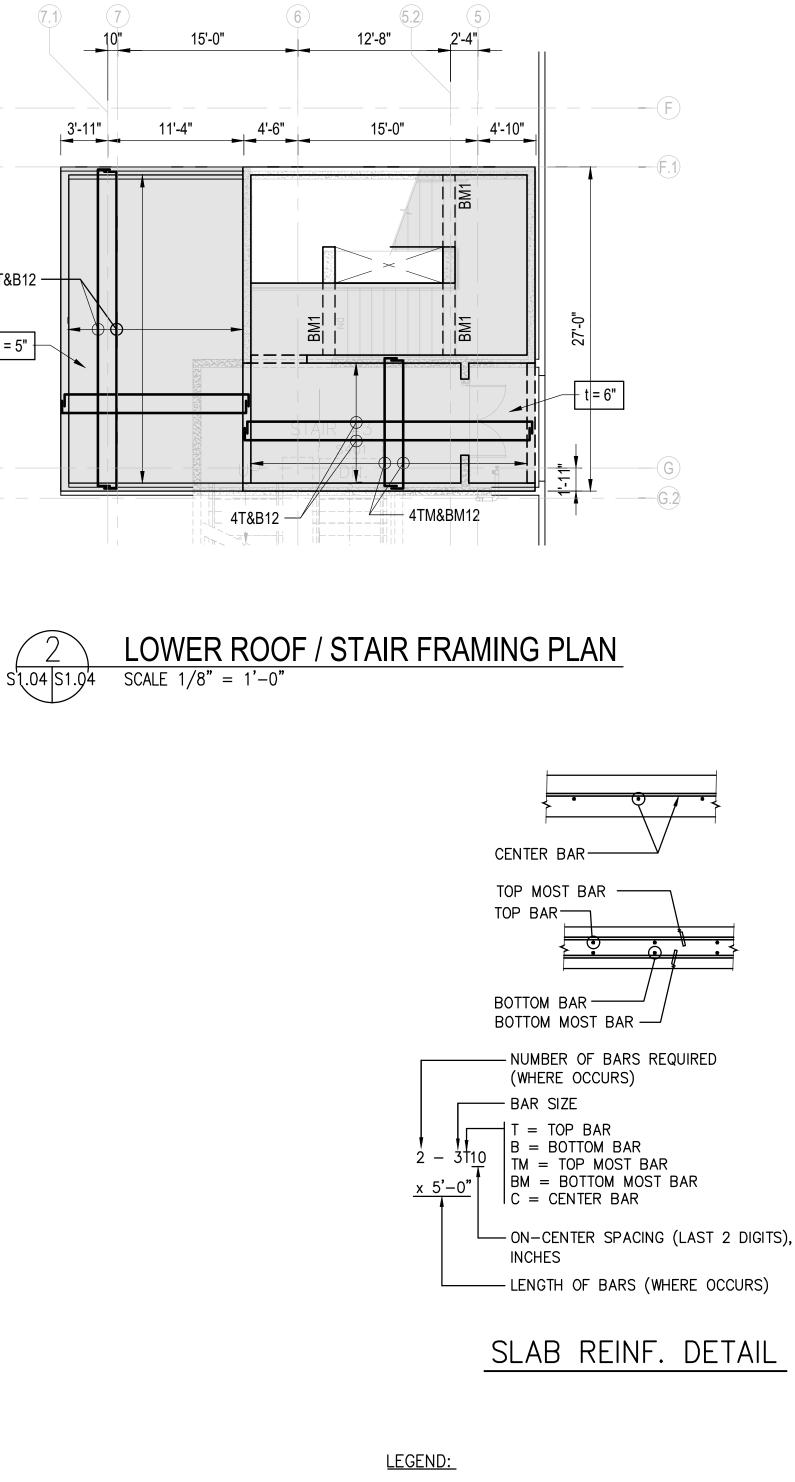

SLAB REINF. DETAIL


LEGEND:

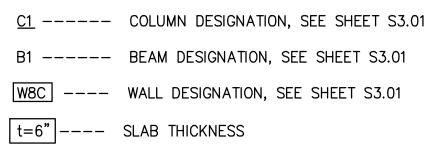

s1.03 s1.03

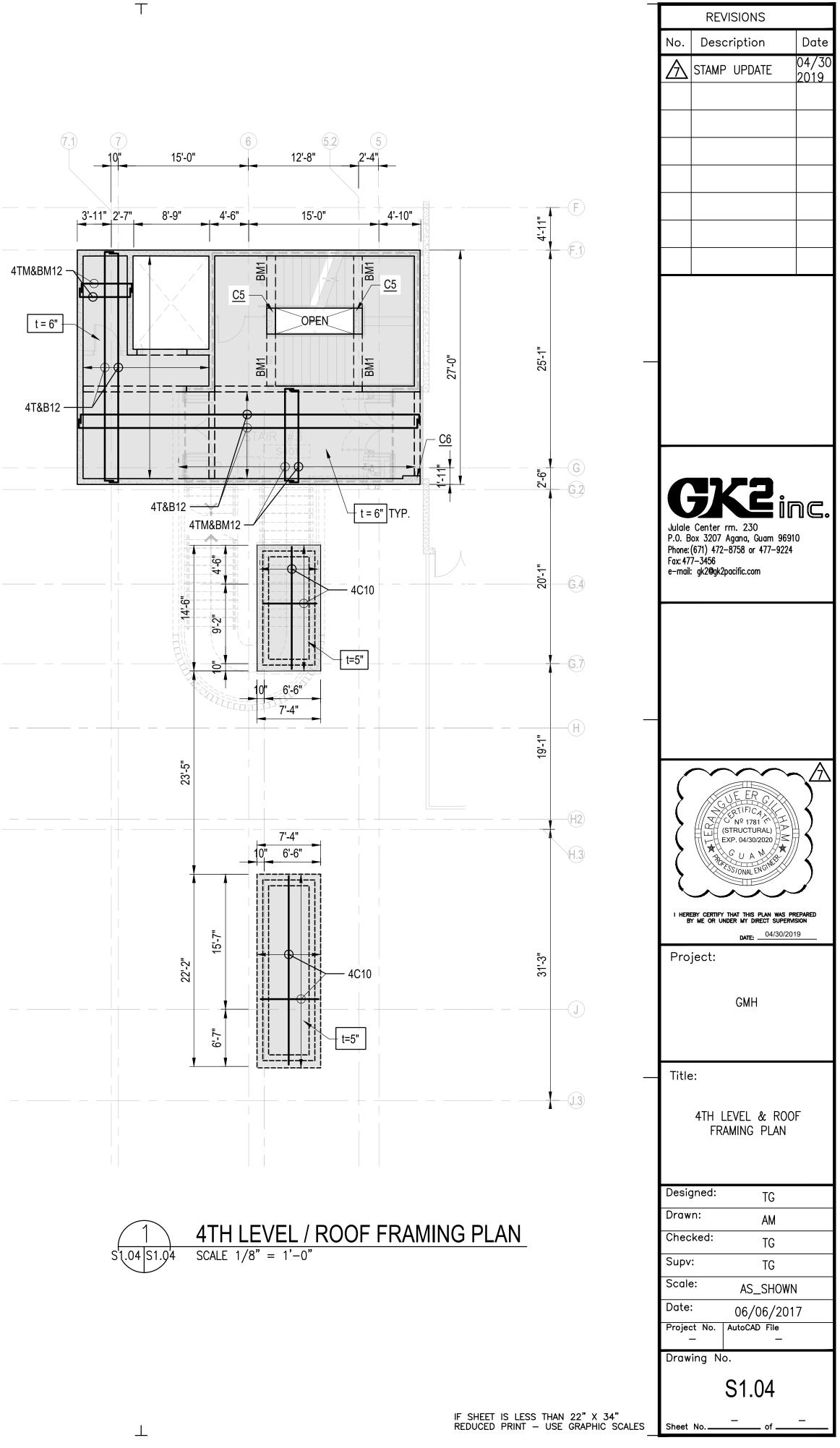

SCALE 1/8" = 1'-0"

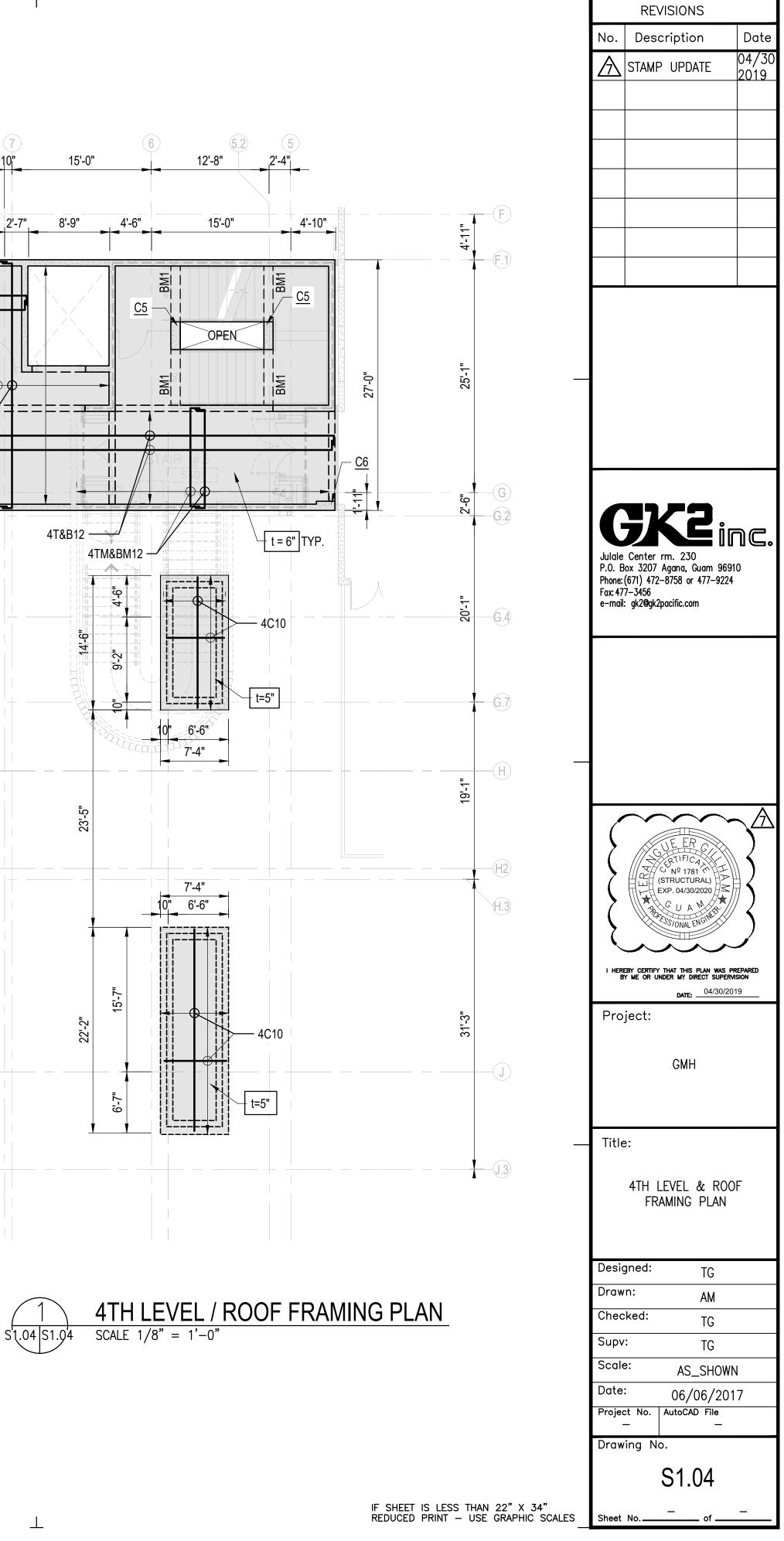
<u>C1</u>	COLUMN DESIGNATION, SEE SHEET S3.01
B1	BEAM DESIGNATION, SEE SHEET S3.01
W8C	WALL DESIGNATION, SEE SHEET S3.01
t=6"	SLAB THICKNESS

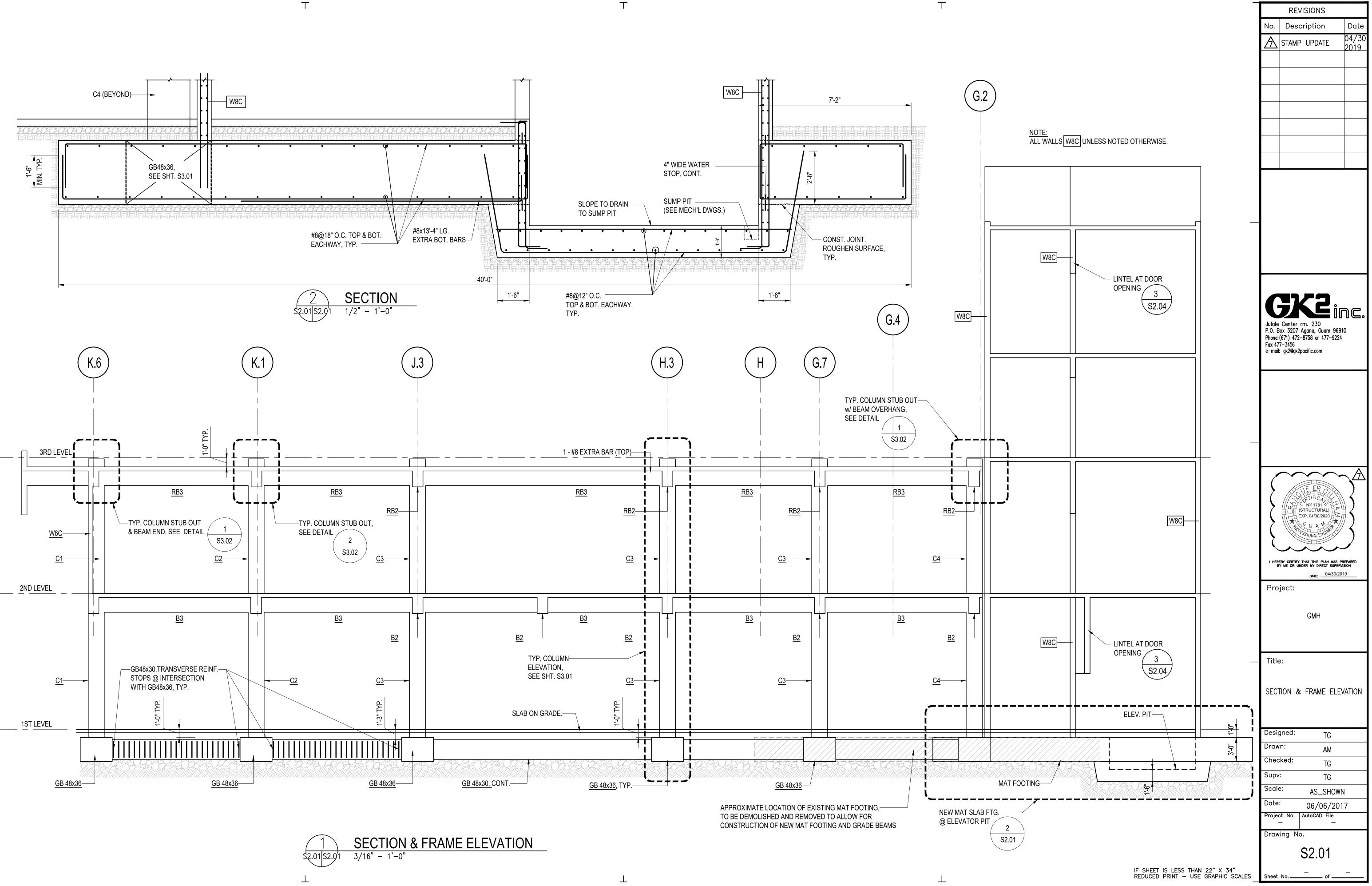


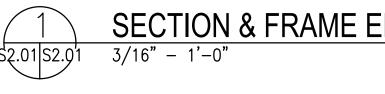
Т

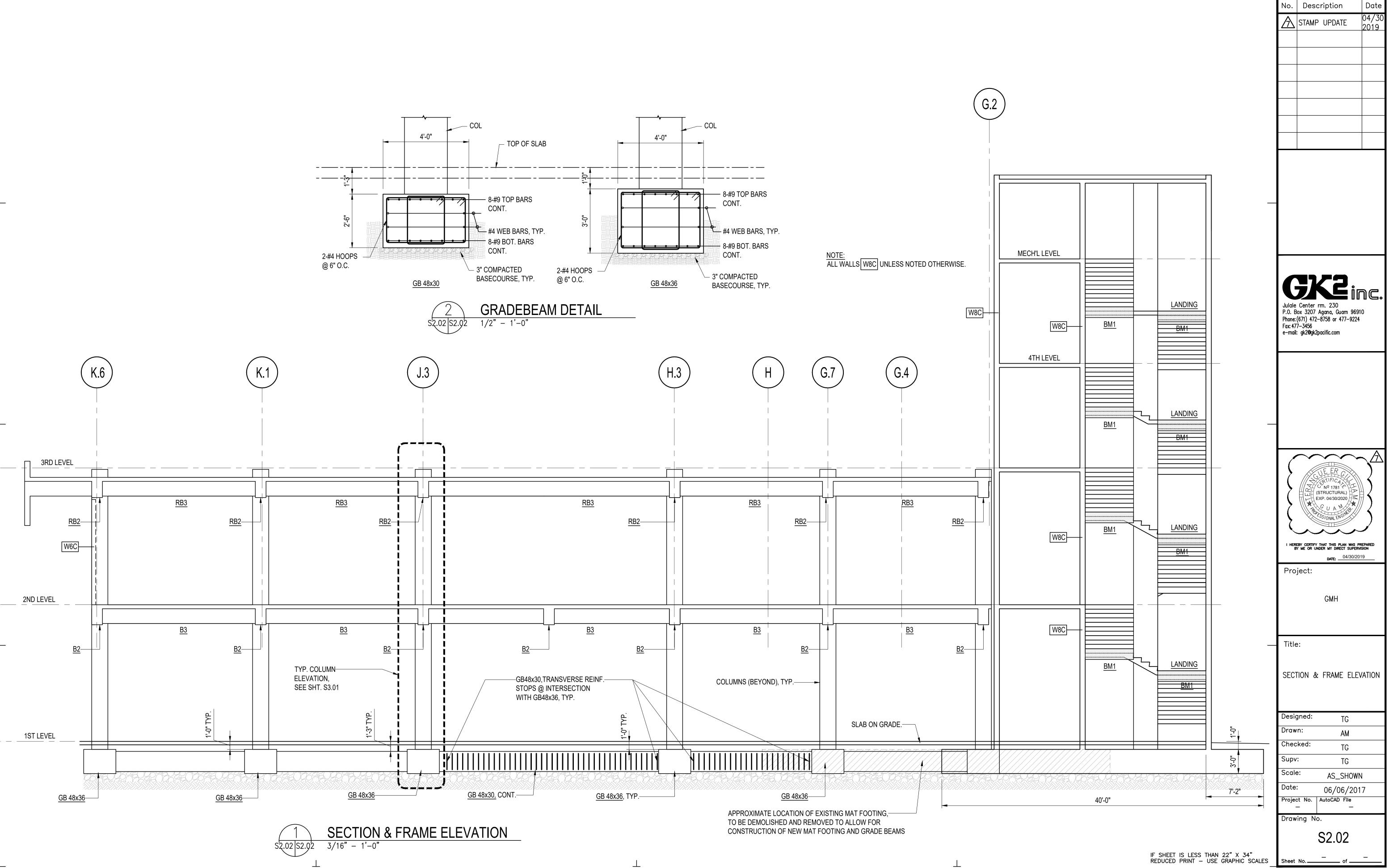

4T&B12 —

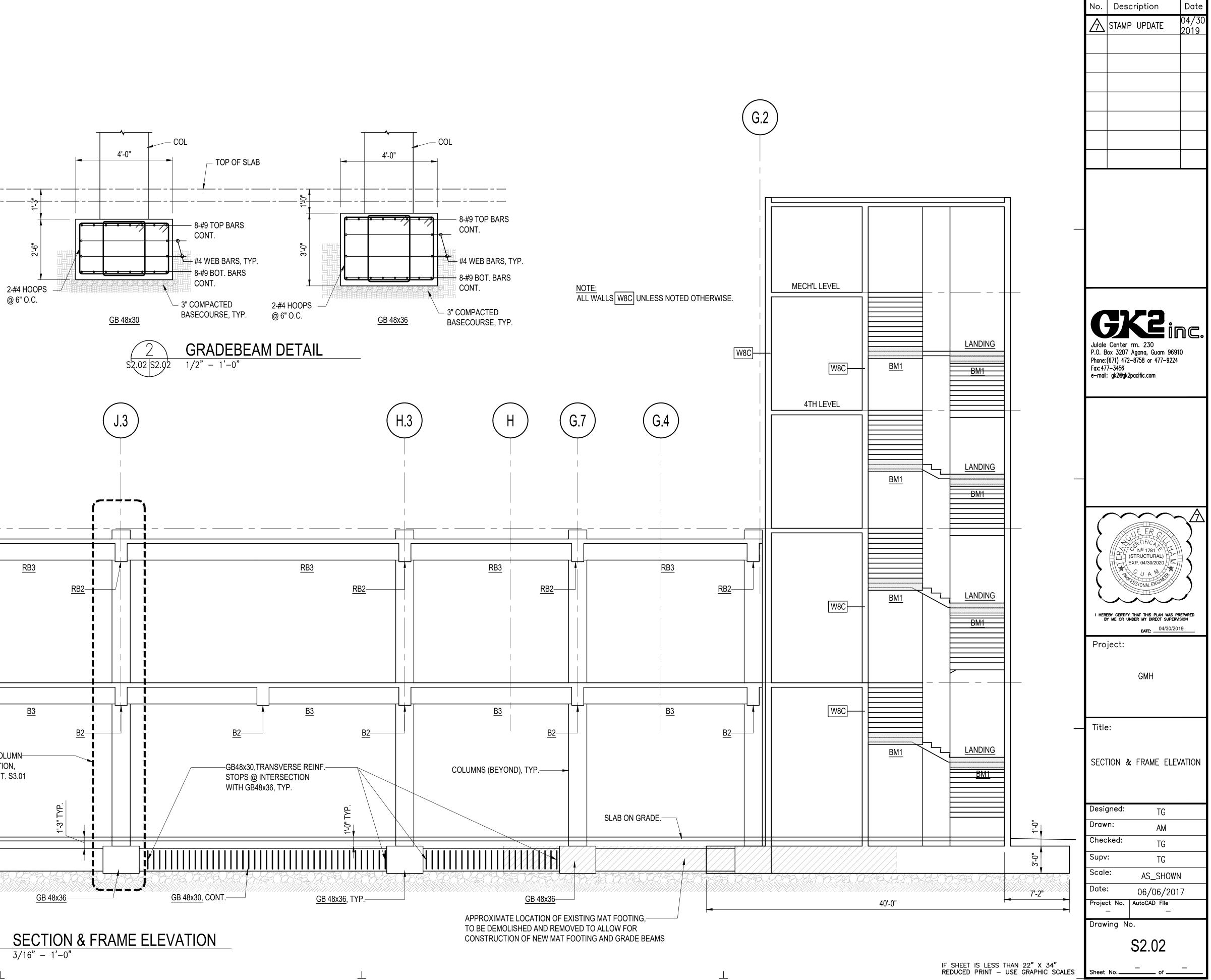

t = 5"

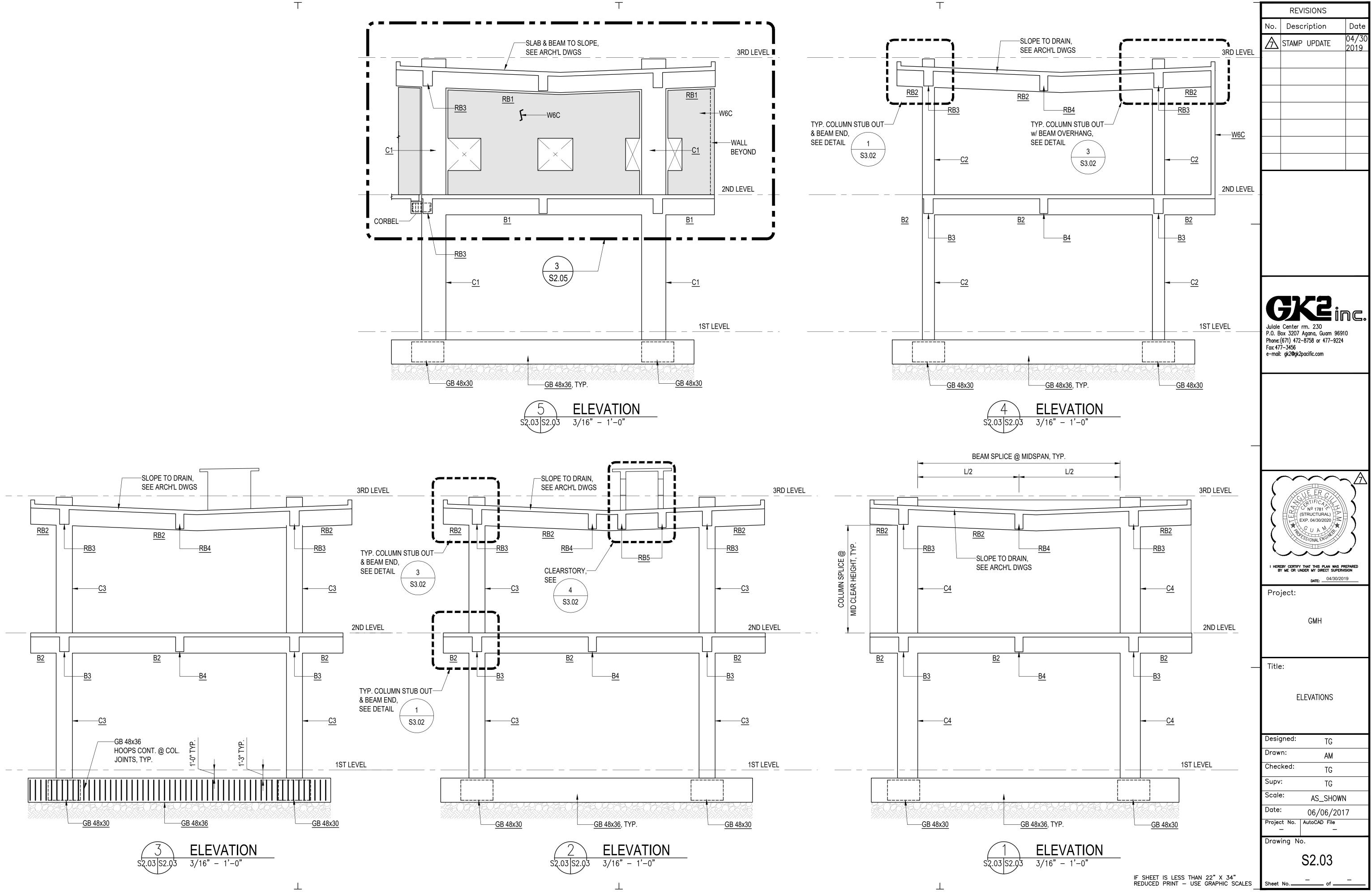

Z

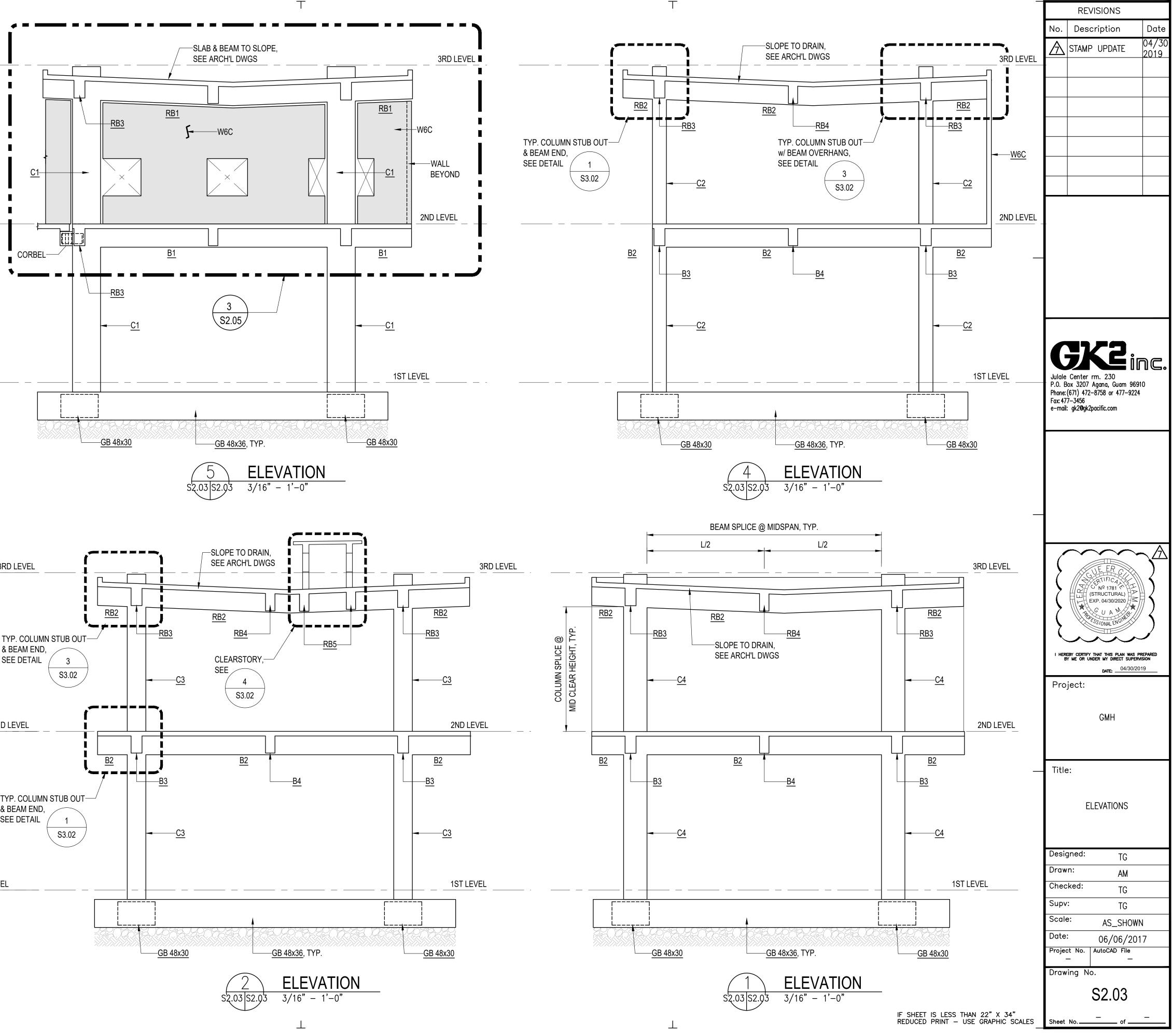


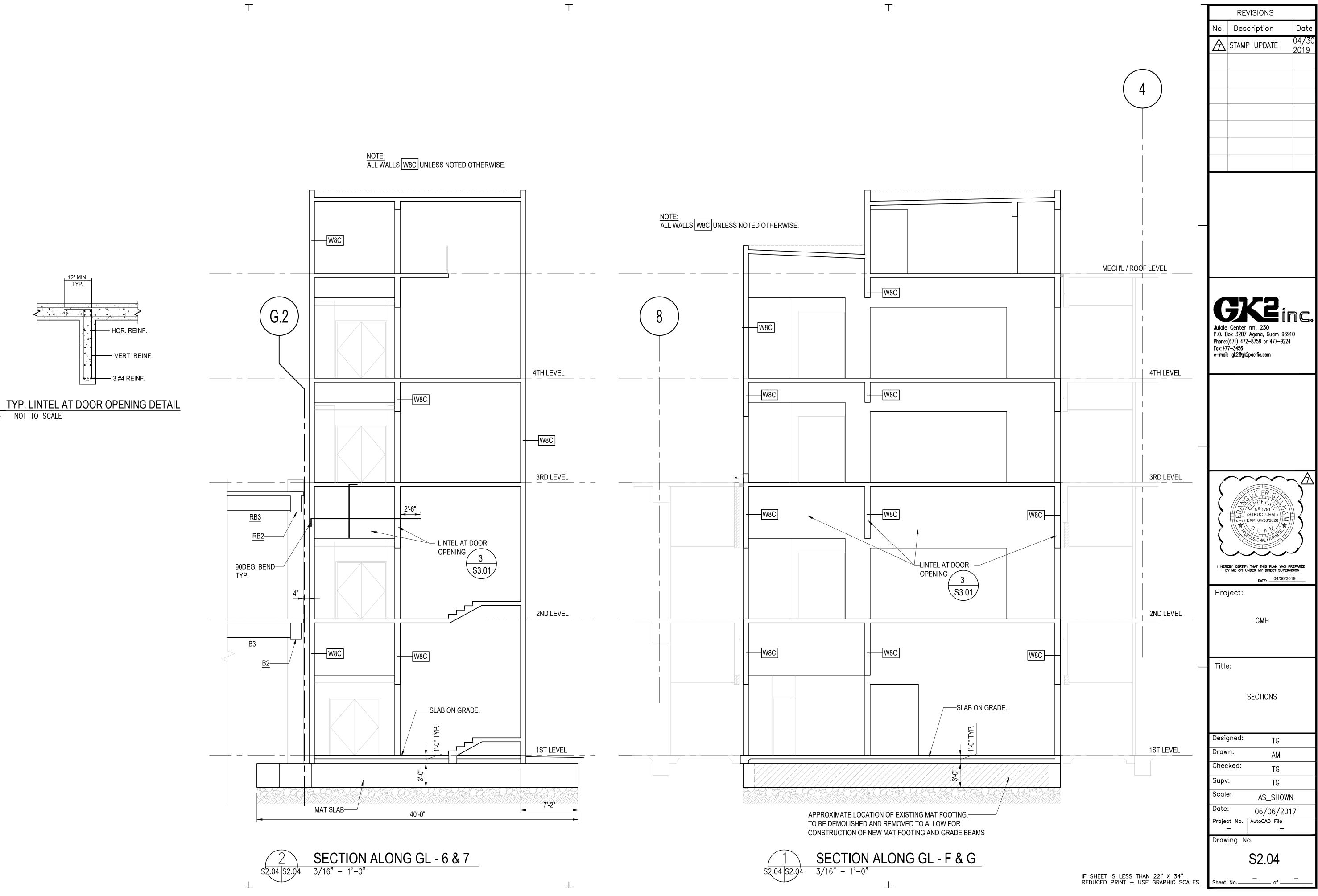

Т





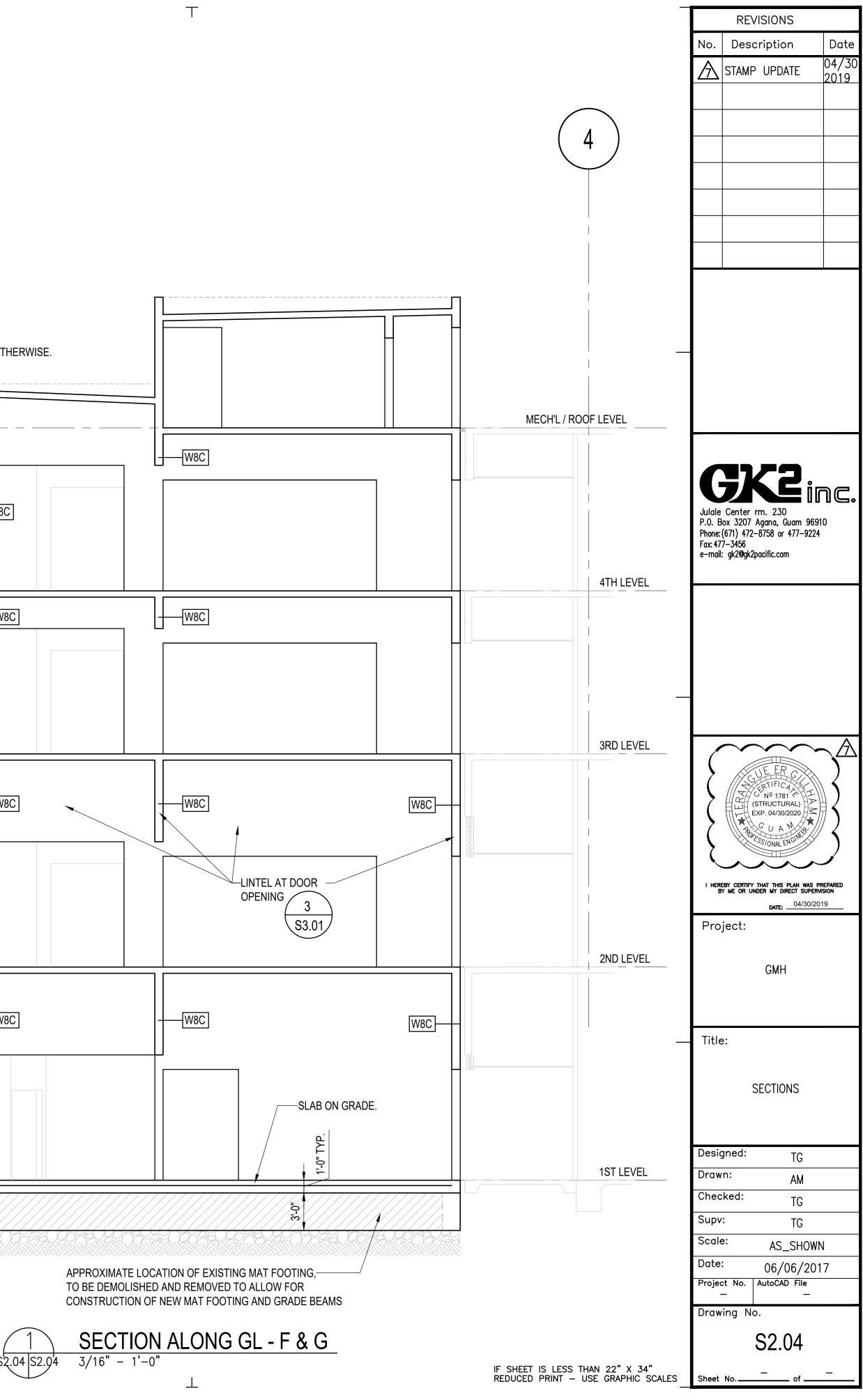


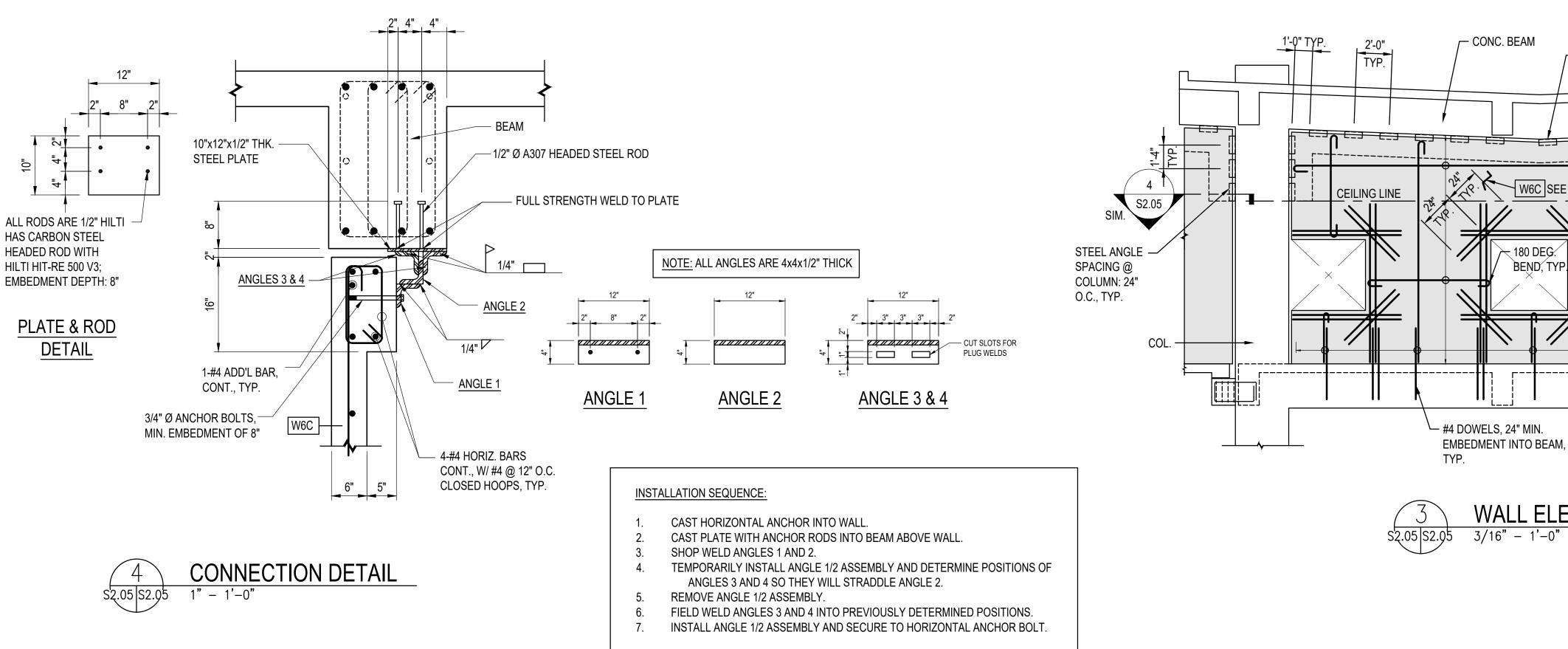

 \top

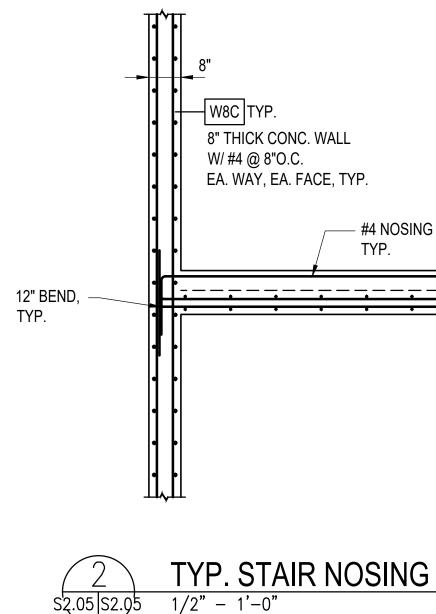


 \top

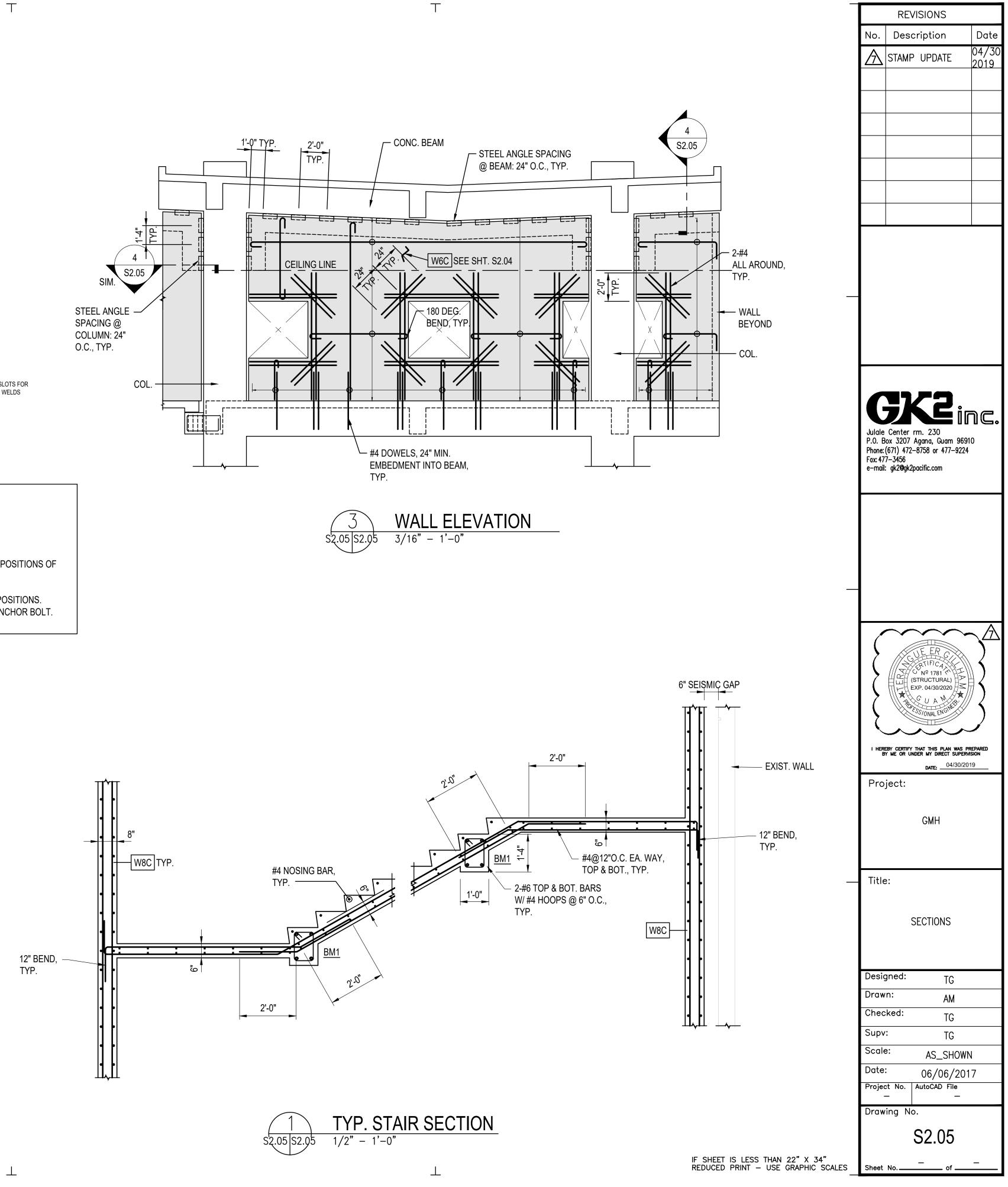
REVISIONS

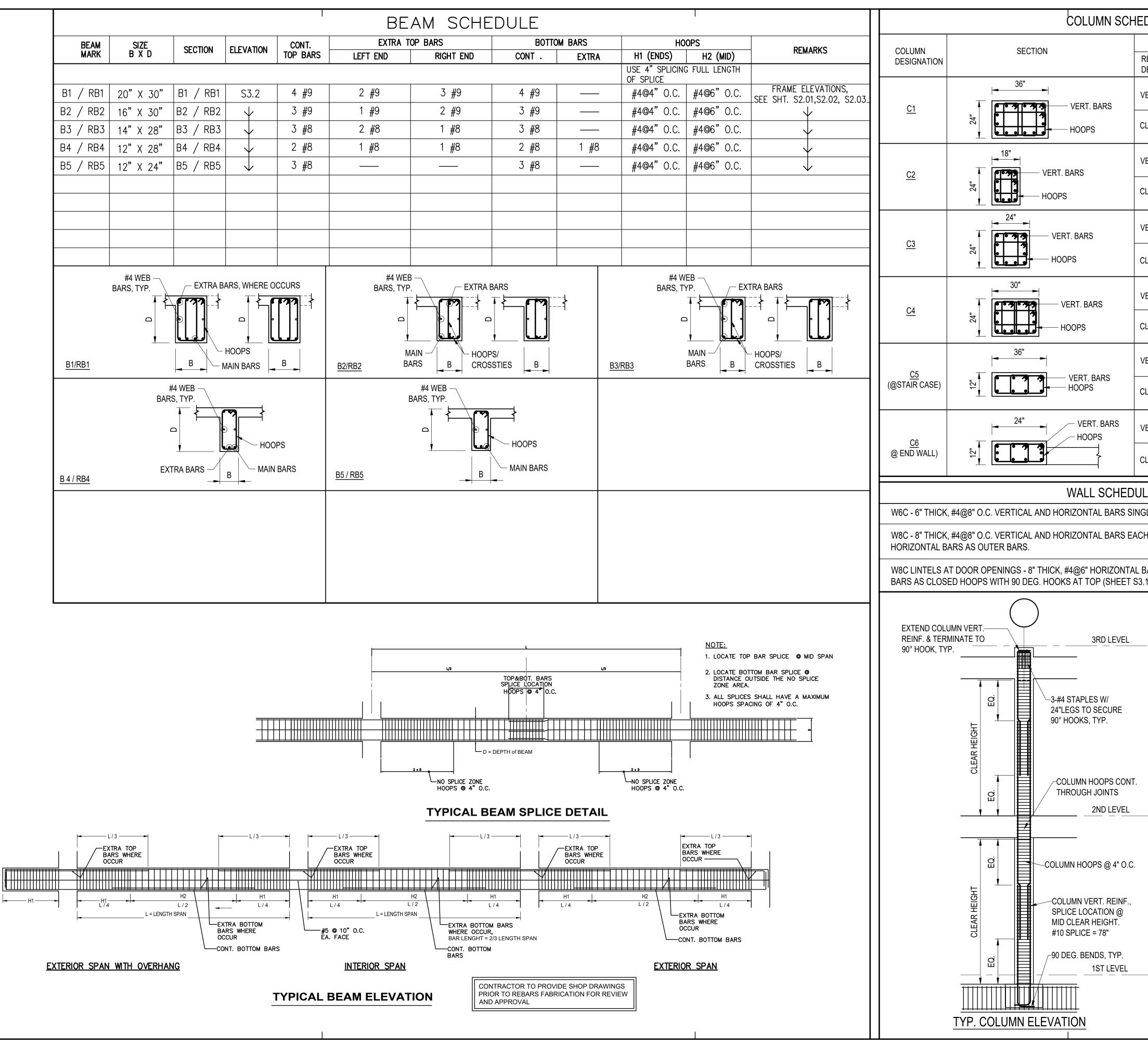






J

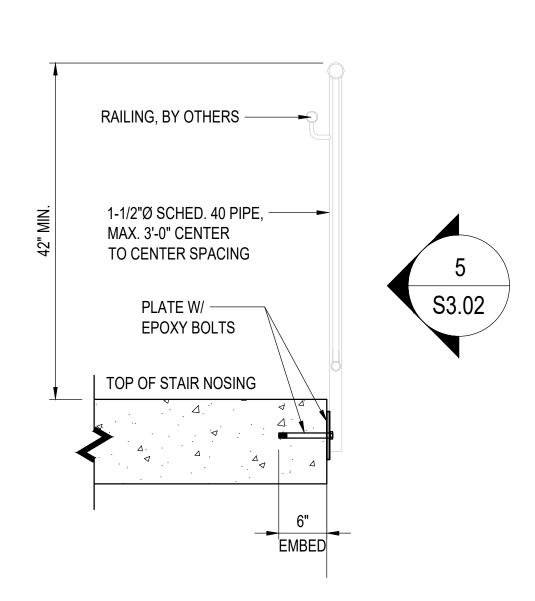

\$2.04 \$2.04 NOT TO SCALE



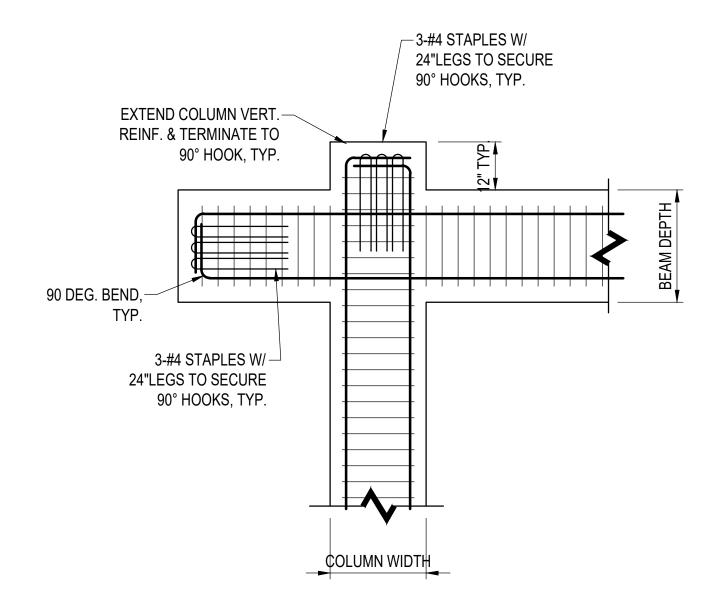
TYP. STAIR NOSING SECTION

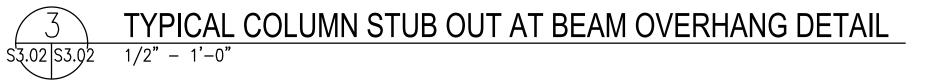
- #4 NOSING BAR,

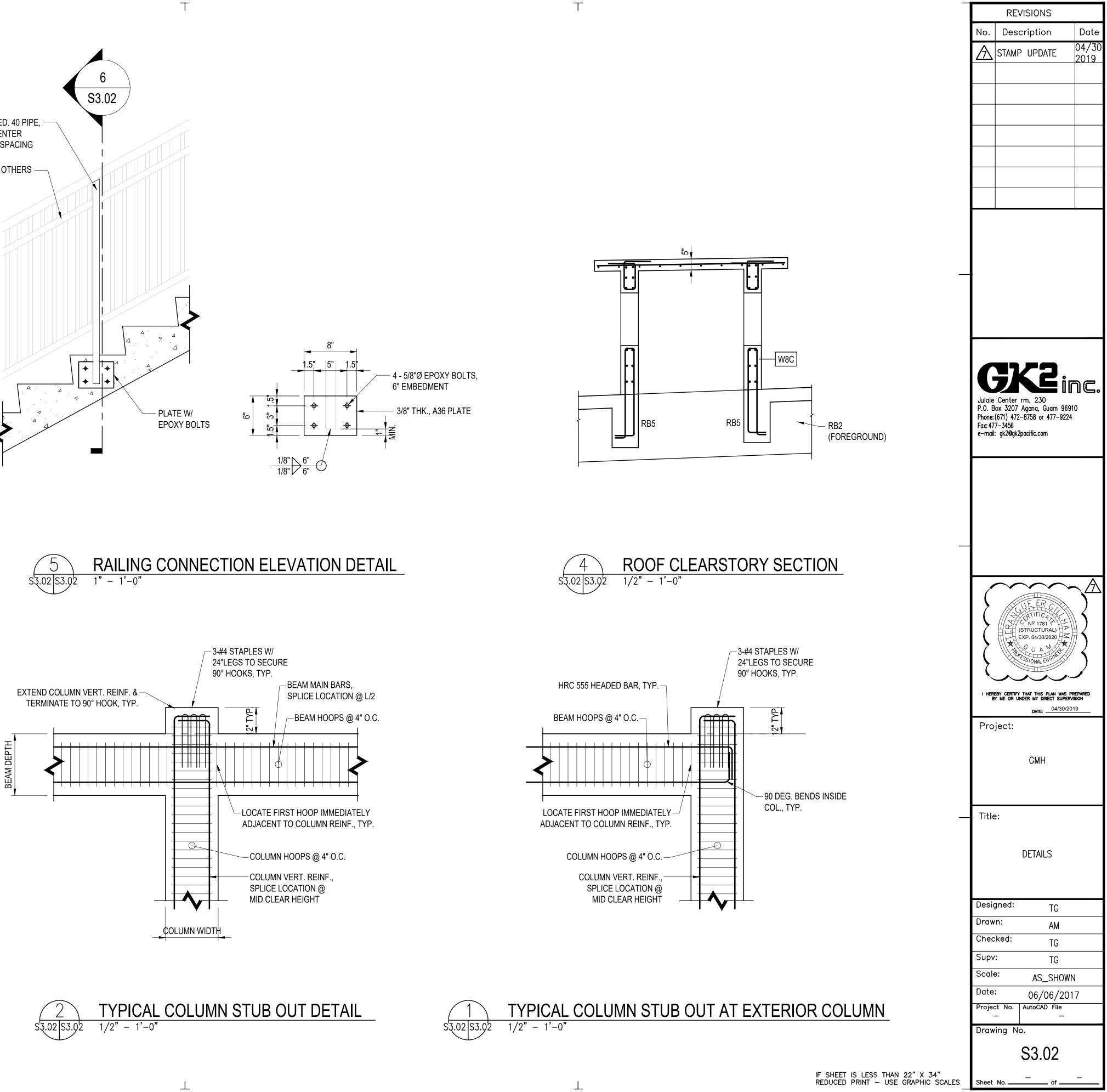
TYP.


B1 / RB1 20' B2 / RB2 16' B3 / RB3 14' B4 / RB4 12'	" X 30" B " X 28" B " X 28" B	SECTION 31 / RB1 32 / RB2 33 / RB3 34 / RB4 35 / RB5	ELEVATION S3.2 V	CONT. TOP BARS 4 #9 3 #9 3 #8 2 #8 3 #8	EXTRA LEFT END 2 #9 1 #9 2 #8 1 #8	A TOP BARS RIGHT END 3 #9 2 #9 1 #8 1 #8	CO 4 3 3	
B1 / RB1 20' 32 / RB2 16' 33 / RB3 14' 34 / RB4 12'	" X 30" E " X 30" B " X 28" B " X 28" B	32 / RB2 33 / RB3 34 / RB4	¥ ¥ ¥	4 #9 3 #9 3 #8 2 #8	2 #9 1 #9 2 #8	3 #9 2 #9 1 #8	4 3 3 3	
B2 / RB2 16' B3 / RB3 14' B4 / RB4 12'	" X 30" B " X 28" B " X 28" B	32 / RB2 33 / RB3 34 / RB4	¥ ¥ ¥	3 #9 3 #8 2 #8	1 #9 2 #8	2 #9 1 #8	3	
B3 / RB3 14' B4 / RB4 12'	" X 28" B " X 28" B	33 / RB3 34 / RB4	↓ ↓ ↓ ↓	3 #8 2 #8	2 #8	1 #8	3	
34 / RB4 12'	"X 28" B	34 / RB4	¥ ¥	2 #8				
,			¥ •		1 # 8	1 #8	+	
B5 / RB5 12 [*]	" X 24" B	85 / RB5	\	3 #8		1 11	2	
							3	
#4 WEB BARS, TYP. EXTRA BARS, WHERE OCCURS HOOPS B MAIN BARS					#4 WEB BARS, TYP. EXTRA BARS MAIN BARS B B CROSSTIES			
B 4 / RB4	BARS, T		B MAIN	PS BARS	<u>B5 / RB5</u>	#4 WEB BARS, TYP.	HOC MAIN	

DULE			REVISIONS			
	REINFORCEMENT		No. Description Date			
REBAR DESIGNATION	REINFORCING	REMARKS	\triangle	STAMP UPDATE	04/30 2019	
ERTICAL BARS	16 - #10	COLUMN ELEVATION,				
LOSED HOOPS	#4 @ 4" O.C. (4 - PER SET)	SHEET S3.01				
ERTICAL BARS	12 - #10					
LOSED HOOPS	#4 @ 4" O.C. (3 - PER SET)					
ERTICAL BARS	12 - #10					
LOSED HOOPS	DSED HOOPS #4 @ 4" O.C. (3 - PER SET)		-			
ERTICAL BARS 16 - #10						
LOSED HOOPS	#4 @ 4" O.C. (4 - PER SET)	¥	-			
ERTICAL BARS	BARS 8 - #8		GK2 inc.			
LOSED HOOPS	#4 @ 6" O.C. (2 - PER SET)		Julale Center rm. 230 P.O. Box 3207 Agana, Guam 96910 Phone:(671) 472–8758 or 477–9224 Fax: 477–3456			
ERTICAL BARS	AL BARS 10 - #8		e-ma	ii: gk2@gk2pacific.com		
LOSED HOOPS	#4 @ 6" O.C. (2 - PER SET)	Ý				
E			1			
BLE LAYER			1			
H WAY EACH FACE	E, WITH					
BARS, #4@6"O.C. V					$\widehat{\ }$	
1) 			I HEF	REBY CERTIFY THAT THIS PLAN WA BY ME OR UNDER MY DIRECT SUP	ERVISION	
			Pro	DATE:	//2019	
				GMH		
		_	Titl	e:		
_	- <u>12" MIN.</u> TYP.			COLUMN & BEA SCHEDULE and T BEAM ELEVATION	YP.	
			gned: TG			
		Drav Che	^{vn:} AM ^{cked:} TG			
	HOR. F	Sup				
		Scal	A2_200			
	ارت آ سطح 3 #4 R	Date Proje	06/06/2 ect No. AutoCAD File	017		
— тү	P. LINTEL AT DOOR OPEN	Drav	- -			
	IF SHEET IS LE REDUCED PRINT	Sheet	S3.01	_		
I		Sheet No of				


1-1/2"Ø SCHED. 40 PIPE, MAX. 3'-0" CENTER TO CENTER SPACING


RAILING, BY OTHERS -



Т

